柔性非晶硅薄膜太阳能电池技术
在过去的几十年中,人类经济活动的持续高速发展使得电力需求迅速增加。太阳电池是一种利用光生伏特效应将太阳能能直接转换为电能的半导体器件,很容易实现并网发电或作为独立能源。众所周知,太阳电池发电具有许多优点,如安全可靠,无噪声,无污染,能量随处可得,不受无需消耗燃料、无机械转动部件、故障率低、维护方便、可以无人值守、规模大小随意、可以方便地与建筑物相结合等,这些优点都是常规发电所不及的。
目前,太阳电池发电在航天、通讯及微电子领域已占据了不可替代的位置,但在社会整体能源结构中所占比例很小,主要原因是太阳电池成本较高,要使其真正成为能源体系的组成部分,必须大幅度降低成本。薄膜太阳电池在降低成本方面比晶体硅(单晶或多晶)太阳电池具有更大的优势,一是实现薄膜化后,可极大地节省昂贵的半导体材料;二是薄膜电池的材料制备和电池同时形成,因此节省了许多工序;三是薄膜太阳电池采用低温工艺技术,不仅有利于节能降耗,而且便于采用廉价衬底(玻璃、不锈钢等)。为此,自上世纪70年代以来,世界各国纷纷投入巨资,制定规划,组织队伍,掀起对薄膜太阳电池的研究热潮,三十几年来在研究和开发应用方面均取得了长足的进步。
薄膜太阳电池主要涉及非晶硅(a-Si:H)、铜铟镓硒(Cu(In、Ga)Se2,CIGS)和碲化镉(CdTe)光伏电池和集成组件,在本文中主要讨论的是目前商业化最成熟的非晶硅太阳电池。薄膜太阳电池按衬底分为硬衬底和柔性衬底两大类。所谓柔性衬底太阳电池是指在柔性材料(如不锈钢、聚酯膜)上制作的电池,与平板式晶体硅、玻璃衬底的非晶硅等硬衬底电池相比,其最大的特点是重量轻、可折叠和不易破碎。以美国Uni-Solar公司采用不锈钢作衬底为例,不锈钢的厚度仅为127um,且具有极好的柔软性,可以任意卷曲、裁剪、粘贴,既使弯成很小的半径,作数百次卷曲,电池性能也不会发生变化。而以高分子聚合物聚酰亚胺为柔性衬底制备的非晶硅太阳电池,器件总厚度约100um左右(含封装层),功率重量比可达到500W/Kg以上,比不锈钢衬底非晶硅电池高出近十倍,是世界上最轻的太阳电池。从制备工艺上看,由于此结构电池采用卷对卷(roll to roll)工艺制造,便于大面积连续生产,降低成本的潜力很大,具有很强的竞争力。
柔性衬底太阳电池能被安置在流线型汽车的顶部、帆船、赛艇、摩托艇的船舱等不平整表面、房屋等建筑物的楼顶与外墙面。另外由于柔性薄膜电池具有较高的质量比功率(500W/kg),同时具有可弯曲性,非常适用于对地观测的平流层飞艇表面,军事上的利用前景光明。
近年来,国外推行的光伏与建筑相结合(BIPV),极大地推动了光伏并网系统的发展。在城镇建筑物上安装的光伏系统,通常采用与公共电网并网的形式。并网光伏系统不需要配备蓄电池,既节省投资,又不受蓄电池荷电状态的限制,可以充分利用光伏系统所发出的电力;光伏阵列一般安装在闲置的屋顶或外墙上,无需额外占用土地,这对于土地昂贵的城市建筑尤其重要;夏天是用电高峰的季节,也正好是日照量最大,光伏系统发电量最多时期,对电网可以起到调峰作用;光伏阵列吸收太阳能转化为电能,大大降低了室外综合温度,减少了墙体得热和室内空调冷负荷,所以也可以起到建筑节能作用。
BIPV的开发是目前世界上大规模利用光伏技术发电的一大研究热点,西方发达国家都在作为重点项目积极进行。除了在屋顶安装光伏电池板外,已推出了把光伏电池装在瓦片内的产品。此外,国外还在研究光伏墙结构(PV WALL),将光伏系统和建筑物外墙相结合。可以预计,光伏与建筑相结合是未来光伏应用中最重要的领域之一,其发展前景十分广阔,并且有着巨大的市场潜力,柔性衬底薄膜电池无疑将在其中扮演重要角色。
二柔性衬底薄膜太阳电池的结构
柔性衬底太阳电池可采用单结或多结结构。单结结构因其稳定性差、效率低已较少采用,而稳定性好、效率高的多结、叠层太阳电池是柔性衬底太阳电池的发展方向,目前多采用三结太阳电池结构。三结太阳电池中,每一个电池都是由三个半导体结相互叠加而成:底电池吸收红光;中间电池吸收绿光;顶电池吸收蓝光;对阳光光谱的宽范围响应是提高电池效率的关键。美国Uni-Solar公司的不锈钢衬底、三结非晶硅锗太阳电池结构如图3所示,其小面积电池效率目前达到14.6%。
三柔性衬底薄膜太阳电池的国内外现状
当前商业化非晶硅电池的稳定效率,单结、双结、三结分别为4%~5%,6%~7%,7%~8%。世界上从事柔性衬底薄膜太阳能电池的研制生产的主要单位是美国的联合太阳
- 基于Android平台和蓝牙的太阳辐照度采集系统(04-29)
- 选择性发射极晶体硅太阳电池实现方法(08-12)
- 薄膜电容器(Film Capacitor)的分类及特性详解(图)(01-22)
- 技术知识:基于薄膜电阻器提供不渗透硫的解决方案(01-21)
- 浅谈非晶硅薄膜光伏电池成本构成图(01-11)
- 薄膜电容器在电磁加热设备中的应用(11-19)