微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 利用太阳能充电的旅行充电器

利用太阳能充电的旅行充电器

时间:08-23 来源:互联网 点击:

通过电阻的电流产生一个电压,IC1D将此电压与一个由参考电压经分压器R6和R5所取得的电压相比较。如果由电流产生的电压高于所对照的电压,则IC1D通过减少共享的输出电压来产生控制。就会减小输出的充电电压,进而减小充电电流。使之稳定在所需要的水平。

当电池充满电时,由IC1C提供一个可以防止电压升高到4.2V以上的控制功能。它将由R15和R16分压的电池电压与由R4和R7分压的参考电压相比较,如果需要时,也通过减少共享的输出电压来加以控制。

由IC侣和R14、R3、R1所组成的温度监控电路的逻辑功能是类似的。热敏元件(NTC电阻)装在电池盒中。其阻值会随着电池温度的升高而降低。热敏电阻与R1组成一个分压器。IC侣将由此节点取得的电压与分压器R14和R3从参考电压得来的电压比较,来判断温度。如果电池温度过高,就通过降压阻止充电过程。换句话说:这里的温度保护功能并不是故障保护器。当此电路接触不良或开路时,充电过程会照常进行。

如果你曾经制作过带有两个后置晶体管(它们也有增益)的放大器电路,那么你就会明白这里会遇到的问题。这样的电路必须防止出现振荡。本电路中使用一个大容量的电容C1来控制电路的速度,从而解决了这个问题。另一个电容C2接在输出端与分压电阻R15/R16的电压相结合,在无负载时保持电路的稳定。分压器提供一个小的负载。

4.充电指示器
我们前面曾经讨论过一些关于指示器的问题。它是由以IC1A为核心的电路组成。这部分电路并不是必不可少的,但也是很重要的。因为作为用户,自然希望了解充电过程的进展情况。这个指示电路的优点就是对于充电电流的反映灵敏。这使你能够确认充电过程实际上是否在进行。以免出现诸如忘记插上电源,或电池没有接好等类简单错误。

这里参考电压被R12/R19再次分压,产生约14mV的电压。如果由于充电电流下降而引起的通过R17/R18的电压下降,并且低于此值(例如:没接电池或电池已经充满电了)。则IC1中内置的集电极开路晶体管将会截止。红色的LED管D1此时会断开。而由于绿色的LED管接在3.3V上,并且通过220电阻接地,所以会点亮。

相反,当有正常的充电电流流过时。IC1d将会导通,使得输出电压下降。这种情况下,红色LED管将会发光。而T3导通将会短接绿色LED管的输出,使之不亮。这样使用双色LED。就可以完美而清楚地指示充电进行情况。

你现在可以认识到选择14mV作为IC1 A的参考电压的意义,因为最大充电电流650mV会在R17/R18上产生153mV的电压降。而14m V正是这个值的1/11。一般当充电电流下降到最大值的1/11,就可以认为电池充电过程已经完成了。

你还可以另外加上一级电路,因为电池如果被放电到2.9V以下,最好限制电电流在电池容量的1/10之下。这一点很容易作到,只需要用另外一个放大器接到与R5并联的一个小电阻上,从而减小限制电流到14mV的参考电压的分压。样机中没有这样做的原因是,这需要另加一片IC。

元器件选择
现在讨论一下关于放大器元件选择的要点。当设计一个电路时,可以有上百种类型的IC可供选择,有各种不同的方案,会使元件选择变得不容易。

在现在这个电路中,不带任何特殊性能的标准型放大器就足够用了。它不需要有特别高的精度(1 mV上下都没有关系):它也不需要特殊的工作温度环境;此外噪音和速度也并不重要。但还是有两个方面注意事项值得提醒。

第一方面是共模范围。当为电路选择放大器时,要使可能出现在电路输入端的所有电压都保持在其共模的限度之内,这是十分重要的。也就是说:选择的放大器要能够控制所有预料到的电压范围。如LM399的参数表显示:其电压下限为0V,上限为比电源低1.5V。

如果选择了LM741,其电压下限为1.5V,则电压14mV将是不能允许的。

这表示:为本电路所选择的放大器要能够在输入电压接近0V时正常工作。

第二方面是电压偏差问题。从数据表中可以看到:输入端的电压偏离为2mV(厂家会提供各种型号,带有不同额定电压误差的放大器,当然,性能越好。价格越贵),这意味这在IC的输入端引入了一个大小约为2mV的误差。

也就是。虽然你认为(或者说希望)充电指示器会在14mV时改变状态(LED亮或灭),但是实际上会早在16mV或者直到12mV时改变。这样产生超过1 0%的误差。这样的误差对于充电指示器来说不是问题。但对于充电电压来说就不可接受了。这就说明了为什么充电电压的参考电压要比2.4V高得多。在2325mV处,2m V的误差仅占0.1%,所以可以忽略。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top