微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 镁燃料电池的研究进展

镁燃料电池的研究进展

时间:09-19 来源:互联网 点击:

如4所示。


图4 镁-次氯酸盐燃料电池工作原理示意图

中性盐电解质镁-次氯酸盐燃料电池的放电反应:

阳极反应:Mg→Mg2 2e- -2.37 V
  阴极反应:ClO- H2O 2e-→Cl- 2OH- 0.90 V
  电池总反应:Mg ClO- H2O→Cl- 2OH- 3.27 V
  中性盐电解质镁-次氯酸盐燃料电池的寄生反应:
  分解反应:2ClO-→Cl- ClO2
  沉淀反应:Mg2 2OH-→Mg(OH)2(s)
   Mg2 CO32-→MgCO3(s)
  析氢反应:Mg 2H2O→Mg(OH)2 H2↑

3 电极的研究

3.1正极

镁燃料电池正极是空气中的O2等氧化剂,其参加反应需要一定的催化剂,这些催化剂能够加速氧化剂在溶液中的电还原反应速率,因此催化剂的催化性能是影响电池性能的重要因素之一,特别是针对氧化剂在中性溶液中的催化。下面就空气中的O2、海水中的O2和H2O2的催化剂进行阐述。

3.1.1 空气中O2的催化剂

目前,空气阴极采用的催化剂主要有贵金属催化剂(铂、铂合金和银)、钙钛矿型氧化物催化剂、金属有机鳌合物催化剂、MnO2催化剂等。贵金属铂基催化剂用作空气阴极氧还原电催化剂显示出良好的催化活性,但由于铂价格昂贵,限制了它的市场化与应用范围。近年来有关金属燃料电池用非铂催化剂阴极研究报道较多,并取得了较大的进展。Gamburzev等[10]人开发了不同碳载体的银电催化剂制备方法,并且对银催化剂空气扩散电极在碱性电解质中的电催化性能进行了研究,结果表明,碳载体银催化剂电极的性能比只有碳催化剂时提高3倍。Wagner等[11, 12]采用PTFE作有机粘结剂,与银粉或氧化银粉催化剂相混合,通过冷压处理过程,得到高比表面积的多孔气体扩散电极。PTFE纤维在电极中呈蜘蛛网结构,形成了很好的疏水孔系统,有利于气体的传输,提高了催化剂的催化活性与稳定性,电流密度达到650mA/cm2,使用寿命长达5000h。

钙钛矿型催化剂也是较好的电催化剂,Li[13]等采用改进的无定型柠檬酸前驱体法合成了LiMn2–xCoxO4系列尖晶石型氧化物,与传统制备方法相比,催化剂比表面积明显增加。金属大环化合物,特别是金属(Fe、Co)赘合物如酞菁、卟琳也都被认为对氧还原有电催化活性,Bron等[14]对碳载叶琳铁化合物进行热处理,制得氧还原电催化剂,其活性虽然低于含10%Pt的商业Pt/C催化剂的活性,但就催化剂中的金属含量而言,两者活性相当。

MnO2催化剂作为氧还原电催化剂,具有价格低廉的优势,具有广阔的应用前景。Z. D. Wei等[15, 16]研究了碳载MnO2催化剂的空气电极,把碳黑和硝酸锰溶液混合后在不同温度下加热焙烧,发现在340℃时制得的MnO2催化剂活性最好,同时进一步研究了Mn3O4对于形成有利于氧还原的MnO2晶体的引导作用。T. Ohsaka、Y. L. Cao等[17-19]对MnO2催化剂的氧还原机理进行了研究。目前,纳米结构的MnO2催化剂是一个研究热点。J. S. Yang等[20]研究了纳米无定型MnO2电催化剂的氧还原性能,在0.85mg/cm2的低催化剂载量的情况下,氧还原反应电流密度可达到100mA/cm2以上。G. Zhang等[21]合成了纳米结构的中间相碳微粒MnO2复合催化剂,由于该催化剂的纳米尺寸网状结构与高密度活性点的优点,制备的空气电极氧还原反应催化活性明显增强。

3.1.2 海水中O2的催化剂

海水中溶解的氧气作为氧化剂时,由于氧气浓度低,要求阴极要具有良好的传质性能、大的表面积和高的催化性能,同时由于电池寿命长,电极必须具有良好稳定性。目前的研究发现,碳纤维是较好的阴极材料。Hasvold等[22]将碳纤维做成瓶刷状,使其具有大的表面积和良好的传质性,以其为阴极制备的镁-海水溶解氧半燃料电池,在2W的输出功率下,初始电压可达1.4 V,运转15h后电压增加并稳定在1.6V;电压的增加可能是由于在碳纤维表面生长了海洋生物膜,提高了其催化活性。Shen等[23]人研究了用Co3O4/C作为铝-海水溶解氧气电池的阴极材料,进行了为期70d的测试,其结果表明与用Pt/C作催化剂的电池性能相当,并且电压稳定。

3.1.3 H2O2的催化剂

H2O2在阴极的反应包括直接和间接两种反应途径。直接途径是H2O2通过电化学还原反应直接生成H2O或OH–;间接途径是H2O2先分解出O2,O2进一步电还原为H2O或OH–。在实际的半燃料电池中,这两种途径并存。直接途径更为有利,因为间接途径O2生成速率如大于O2消耗速率,将导致O2过剩和积累,系统内压升高,需设置排气系统,造成电池结构复杂及安全性降低。因此对H2O2阴极的要求是:(1)催化活性高,提高反应速率,减少活化过电势;(2)直接电还原选择性高,减少O2生成;(3)传质性能好,减少浓度极化。

日前针对H2O2的催化剂主要有两类,一类是负载在碳基材料(如碳

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top