微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 数字控制的开关电源设计方案

数字控制的开关电源设计方案

时间:09-21 来源:互联网 点击:

  引言

  在高功率因数校正AC/DC电路中广泛采用UC3842、UC3855A等专用控制芯片来实现功率因数校正,而在移相全桥DC/DC电路中广泛采用TL494、UC3875等专用电源芯片来驱动开关管,特定的电源芯片本身不可编程、可控性较差、难以扩展以及不易升级维修,同时电源芯片为模拟控制芯片,具有模拟电路难以克服的由温漂和老化所引起的误差,无法保证系统始终具有高精度和可靠性,克服以上缺点可采用数字控制器DSP代替传统的模拟控制芯片。目前数字处理(DSP)技术逐渐成熟,新一代DSP采用哈佛结构、流水线操作,即程序、数据存储器彼此独立,在每一时钟周期中完成取指、译码、读数据以及执行指令等多个操作,从而大大减少指令执行周期。另外,由于其特有的寄存器结构,功能强大的寻址方式,灵活的指令系统及其强大的浮点运算能力,使得DSP不仅运算能力较单片机有了较大地提高,而且在该处理器上更容易实现高级语言。正是由于其特殊的结构设计和超强的运算能力,使得以前需要硬件才能实现的功能可移植到DSP中用软件实现,使数字信号处理中的一些理论和算法可以实时实现。

  1 数字控制开关电源系统

  该通信开关电源主要由主电路和控制电路组成,主电路主要由单相高功率因数校正AC/DC变换电路和移相全桥软开关DC/DC变换电路组成,它包括单相交流输入电源、滤波网络、整流电路、Boost高功率因数校正电路和移相全桥变换电路。控制电路主要包括DSP数字控制器,它由DSP、驱动电路、检测电路、保护电路以及辅助电源电路组成。系统主电路和控制电路原理框图如图1所示,图1中E表示输入电压及电感电流、输出电压及电流和主开关管漏极电压、采样电路;B表示功率开关驱动电路;F表示输出电压及电流、原边电感电流和4个开关管漏极电压采样电路。

  

  1.1 单相功率因数校正AC/DC变换电路

  单相功率因数校正AC/DC变换电路采用Boost型ZVT-PWM变换器,其电路图如图2所示。该电路能实现主开关管S的零电压开通和二极管D的零电流关断。

  

  1.2 移相全桥软开关DC/DC变换电路

  移相全桥软开关DC/DC变换电路采用如图3所示的全桥DC/DC变换器。

  

  1.3 基于DSP的硬件电路设计

  针对TMS320F2812为核心的数字控制电路如图4所示。从图4中可以看出,控制系统主要包括以下几部分:DSP及其外围电路、信号检测与调理电路、驱动电路和保护电路。

  

  其中,信号检测与调理电路主要完成对图2输入电流和电压采样、A/D等功能,DSP产生脉冲信号然后通过D/A转换后驱动图2,3的功率开关管。

  1.4 系统控制算法软件实现

  DSP数字控制能够实现较之模拟控制更为高级而且复杂的策略,与模拟控制电路相比较,数字控制电路拥有更多的优点:数字PID系统相对于模拟PID系统具有设计周期短、灵活多变易于实现模块化管理,能够消除因离散元件引起的不稳定和电磁干扰等优点。数字控制系统主程序图如5所示。主程序的作用:初始化,其中包括给控制寄存器赋初值,这时系统工作时钟开CAP1INT、CAP2INT中断,在等待中断的空闲时间内采集输出信号,设置ADC转换结束标志位为1.为保证程序的正常运行要禁止看门狗,设置PWM信号的频率和死区时间,设置通用定时器1和2的控制寄存器,设置捕获控制寄存器检测下降沿。

  

  2 实验结果及其分析

  设交流输入电压220V,输出电压为48V,输出功率为1000W,效率为95%,变换器工作频率为100kHz.

  2.1 单相功率因数校正AC/DC变换器升压电感计算

  Boost升压电感的计算必须是在最差的情况下得到,即输入最低电压,而输出满载的时候来确定,其输入电流:

  

  允许的纹波电流一般是取输入电流的20%,即:

  

  在最低线电压时最小占空比为:

  

  由电磁感应的基本公式推导出临界电感为:

  

  因此可取升压电感L=470H.

  2.2 移相全桥软开关变换器滤波输出电容计算

  选择输出电容时,电容的输出电压维持时间非常重要。当输入能量截止时,要求电容电压仍可维持在某特定范围内,输出滤波电容由以下公式计算:

  

  2.3 仿真结果及分析

  为了验证基于DSP控制数字开关电源设计的可行性和参数选择的正确性,利用Pspice软件对图1所示的系统进行仿真,仿真波形图如图6,7所示。图6为输入交流电压和电流仿真波形图,从图6中能清楚的看到输入电流很好跟随交流输入电压,实现了功率因数校正的目的。图7所示为输出电压仿真波形,从图7中可以看到输出为一条比较光滑的48V直流电压。仿真结果跟理论计算的结果完全符合,达到了预期的目的。

  

  

  2.4 试验结果及分析

最后,设计了基于TMS320F2812的功率因数校正实验电路,实验结果如图8所示,该图为输入电压和输入电流波形,波形显示了输入电流很好的跟随了输入电压,

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top