嵌入式便携设备电源管理的分析案例
这种不确定性源于系统模型的抽象性。基于随机的电源管理策略不仅指定何时进行状态转换,而且还指定转换到哪一工作模式,因此适用于多工作模式的系统设备。它将动态电源管理看作是随机最优化问题, 而不像基于预测的电源管理策略那样通过预测的方法消除任务请求的不确定性。基于 CTMDP(连续时间马尔可夫决定过程)的随机决定动态电源管理策略给出了系统电源管理的一个最优化的决定, 但这种最优化是在一个具有不确定性的模型基础上的, 即这种算法所得到的最优化的决策只能得到系统的性能和功耗的一个预期值,并不能保证在特定的系统设备中适用,而且马尔可夫过程数学模型的建立也是需要仔细分析的。
2 基于最高决策的电源管理策略
由以上对系统电源管理策略的分析可知, 系统设备的电源管理贯穿系统设备的各个状态,因此应提出一种电源管理方法,将多种电源管理策略结合起来对系统功耗进行协同管理。该电源管理构架中有一个策略集合,每个策略都有自己的优先级,按需求使用各个策略来进行多策略电源管理。但这种构架也存在问题: 首先复杂系统的任务很可能多种多样, 而且电源管理策略针对不同的任务其降功效率也不同, 仅用电源管理策略的优先级来决定使用电源管理策略, 缺乏针对性;此外各策略信息应该在执行系统任务的过程中得到统计, 并自适应地改变其优先级。
这里提出一个基于最高决策管理模块的电源管理构架。 这种系统设备电源管理构架包括了最高决策模块、任务信息统计模块、策略集合模块、信息检测模块和控制模块 5 个主要部分,如图 4 所示。
信息检测模块: 用于检测系统状态信息和新到的任务信息。 任务信息统计模块: 用于统计系统设备所执行的任务信息,并解释成准确的任务信息参数。
策略集合模块: 通过对系统状态和任务信息等进行动态的统计,计算电源
管理策略的效率,更新电源管理策略信息并解释成准确的电源管理策略参数。
最高决策模块: 根据接收的任务和系统状态信息,在策略集合中选择最优的电源管理策略或者电源管理策略组,通过控制模块对系统设备进行电源管理。
任务信息是实时接收的;系统状态信息是在每次系统状态改变时,由信息检测模块提供给最高决策模块的;电源管理策略的信息指计算后的电源管理效率,以及电源管理策略适用的系统状态和任务。例如,当新任务到达后,必然有一种预测策略对此任务完成后的 Idle 状态持续时间的预测效率最高。电源管理策略控制期间,每一次决策的成功或失败都会改变该电源管理策略的优先加权参数。这样最高决策模块根据系统状态和任务信息, 决定采用最优的电源管理策略或者电源管理策略组,使系统设备的各个部分得到最优的电源管理。
3 小结
当今便携设备中电源管理的核心是电源管理策略, 本文中提出的基于最高决策的电源管理构架的关键是预先选定电源管理策略集合。关于电源管理策略,有两方面问题需要继续探讨和研究: 第一,权衡系统设备工作性能和功耗。电源管理策略进行系统功耗管理过程中,虽然电源管理策略尽量避免延时,但是这种延时又不可避免。 系统使用者对于性能和功耗的权衡直接影响电源管理策略的选择,以及电源管理策略中具体参数的预设。第二,权衡电源管理效果和复杂度。策略集合和任务信息集合的尺寸越大,统计信息越完备,电源管理策略的决策就越准确,但同时电源管理模块的复杂度也增加了,这直接关系到其工程实现的复杂程度。另外,建立电源管理策略标准,
- 低功耗嵌入式实现的方方面面(04-30)
- 功率与控制的结合使LED照明方案灵活、简便(10-20)
- S3C2440A嵌入式手持终端电源管理系统设计(01-11)
- 几种实用的低电压冗余电源方案设计(01-26)
- 基于先验预知的动态电源管理技术(03-28)
- 基于CAN通信的电源监控系统的设计(04-06)