一种用于高效率太阳能逆变器的新型紧凑型功率模块系列
T运行在低的50Hz电力线频率,建议使用FREDFET器件或带有较快本征二极管的CoolMOSTM晶体管,使系统的EMI干扰最小化。
太阳能逆变器的另一个重要特性是使用寿命和可靠性。逆变器产生的EMI/RFI也是至关重要的。
SiC二极管的重要特性是其正向电压降为零和反向恢复损耗为零,因而与标准的快速硅二极管相比,在降低开关噪声和提高性能方面具有显著的优越性。
在硬开关条件下,二极管的反向恢复电流对功率开关内部的开通能量影响很大。这样,随着开关频率的增加,在功率开关和二极管中都会产生相当数量的开通损耗。必须要指出的是,在反向恢复期结束时,可能出现某些振荡,导致在系统中产生大量的噪声,即使使用昂贵和庞大的输入滤波器,这些噪声也是很难消除的。
较快的恢复特性能够使功率开关和二极管中的开关损耗都降低很多。SiC二极管关断时所观察到的小峰值电流是由于Schottky势垒器件的结电容而产生的,并不是反向恢复特性。与使用通常FRED二极管的配置不同,没有测量到瞬时扰动或振荡。这样无噪声的开关运行,是缩小输入滤波器尺寸和简化它的关键所在,并对满足严格的EMI/RFI规定起着重大的作用。
SiC器件不仅在室温具有极好的恢复特性,而且能在一个很宽的温度范围内保持不变。如图10 所示的是一个10A/600V Cree SiC二极管与一个具有同样电流和电压额定值的硅二极管的反向恢复特性的比较。
图10 不同结温下SiC二极管和Si 二极管的反向恢复特性
因此使用SiC二极管能够明显地降低一个太阳能逆变器的整体损耗,使之能达到创纪录的效率。因为较低的损耗也就是意味着较低的工作结温,所以这将会明显地延长逆变器的工作寿命,这对于太阳能应用是至关重要的。
基于这一点,采用一个优化的功率器件混合技术,可以得到最有效率的性能;低导通损耗的IGBT工作在50Hz, 快速开关器件工作在高频,而SiC二极管与快速晶体管组合。
将开关频率选定为最低的16 kHz会获得可能的最高效率,如图13所示。
图13 16 kHz下,快速NPT/Trench IGBT和 CoolMOSTM / Trench开关与SiC二极管组合的效率曲线
在本文中,对散热器温度为75°C时的不同的配置组合进行了比较。当逆变器工作在最高环境温度时,其效率能降低1%之多。与通常的硅器件相比较,具有卓越温度特性的SiC二极管能增加在这些极端条件下的效率差距。使用氮化铝能够进一步改善热特性。
标准模块使用了热传导性比现有的铝衬底更好的衬底。因为功率器件具有更好的结至外壳的热阻,所以使工作结温降低。对于硅器件而言,较高的结温意味着较高的导通损耗和开关损耗,而对于SiC器件而言,仅仅导致较高的导通损耗。因此,使用氮化铝(AlN)衬底能进一步增加太阳能逆变器的效率,并延长其工作寿命。
“COOLMOS™ 是由Infineon Technologies AG开发的一个新的晶体管系列,“COOLMOS”是Infineon Technologies AG”的注册商标。
5.结论
本文阐述了为了使现代的太阳能逆变器能达到高效率的目标,在一个先进的全桥配置中组合低导通损耗和快速的功率器件技术是关键。
Microsemi 功率产品部能提供各种各样的专用功率模块,这些模块采用在本文中描述的所有各种功率器件技术来集成电路拓朴。所有列出的产品都能提供使用FRED二极管的模块,也能提供为改善性能而使用SiC二极管的模块。这些产品的特点是具有一个能与散热器进行极好热传导的基板,因此进一步提高了太阳能逆变器先进工艺技术的性能p质量和可靠性水平。
在不久的将来即可提供SiC开关器件,MOSFET或IGBT,因而能获得好于99%的效率,达到技术上所能实现的最大值。
功率 模块 系列 紧凑型 新型 高效率 太阳能 逆变器 用于 相关文章:
- 专用于便携设备电源管理的超小型降压转换器(06-29)
- 级联低压差稳压器SMPS(07-12)
- 基于DSP的单相精密电源硬件设计(07-24)
- WiFi 收发器的电源和接地设计(08-12)
- 微安级数控恒流源的设计(08-20)
- 新一代手机电源管理的最佳化挑战(08-30)