动力锂电池离散特性分析与建模
充放电循环后, 这些都会表现在电池组的SOC 离散特性中。
因此, 本文提出了一种基于电池荷电状态的电池组离散度的概念, 以表征电池组具有一定离散度的特性, 并在数据统计和实际经验的基础上建立了基于电池荷电状态的电池组离散度模型, 由整体离散度和极限离散度共同组成。式( 3) 第一项描述的是电池组的整体离散度, 式( 3) 第二项和第三项描述的是电池组的极限离散度。
式中, ε为电池组整体离散度; n 为电池组中电池单体数目; SOCi 表示电池单体的荷电状态;
为电池组平均荷电状态;ε p+为电池组正向极限离散度;ε p- 为电池组负向极限离散度; SOCmax 为电池单体荷电状态极大值; SOCmin 为电池单体荷电状态极小值。
式( 3) 第1 项所描述的是电池组整体离散特性模型, 电池组的整体离散度是所有电池单体的荷电状态的标准误差, 反映了整组电池的离散态势, 这一态势不会因为个别单体电池的较大离散而剧烈变化。
而式( 3) 中第2 项和第3 项所描述的是电池组极限离散特性模型, 电池组的极限离散度反映的是电池组中个别单体的荷电状态与整组电池的平均荷电状态相比, SOC 差异的极限离散态势。正向极限离散度反映的是单体高于平均荷电状态的极大值, 负向极限离散度反映的是单体低于平均荷电状态的极小值。
(1) 开路电压- SOC 模型
电池的开路电压在数值上接近电动势, 用开路电压法可估计电池的SOC。
电池的开路电压会受到电解液、温度和SOC 的影响, 试验用锂离子电池单体不同温度下的开路电压曲线如图5 所示。
由图5 可以看出, 电池单体开路电压受温度的影响很小, 因此可以用多项式回归的方法, 以SOC 为变量来描述电池单体开路电压的变化。
令开路电压y=Uoc, x=SOC, 多项式次数为7( 多项式次数的确定是经过回归分析、显着性检验后得到) , 因此可将SOC 描述为开路电压Uoc 的函数:
通过式( 5) 可求得式( 6) 中回归系数的最小二乘估计, 于是, 得到开路电压Uoc 与电池荷电状态SOC的数学模型式( 7) .
图6 所示为电池开路电压仿真曲线与实际值的比较, 结果表明: 以不同的方式达到一定的荷电状态时, 电池的开路电压基本符合SOC 与开路电压的数学模型, 误差在1%以内, 说明通过锂离子电池的开路电压估算其荷电状态( SOC) 是可行的。将式( 3) 与式( 4) 联立, 可用电池开路电压来描述电池组的离散度:
(2) 电池组静态离散度模型的应用。
电池组静态离散特性是由整体离散度和极限离散度联合描述的。一方面给出了电池组当前离散状态的量化指标, 并预测电池组的离散趋势; 另一方面也为制定合理的电池管理控制策略和均衡充放电策略等提供依据。
图7 所示是锂离子电池组整体荷电状态为0.75时的开路电压分布情况。
电池单体的平均电压为3.9104V, 最高电压为3.925V, 最低电压为3.877V, 开路电压标准偏差为0.01192V, 开路电压极差为0.048V; 根据开路电压与SOC 的函数关系可求得, 电池组平均SOC 为0.7493,最高SOC 为0.7711, 最低SOC 为0.6927, 整体离散度为1.89%, 电池组正向极限离散度为2.17%, 电池组负向极限离散度为5.66%.
电池组的整体离散度越大, 表示电池组整体离散愈严重, 更多的电池单体出现离散趋势。大量试验表明, 对于锂离子电池组, 当整体离散度小于1%时,电池组一致性较好; 离散度介于1%- 3%, 电池组处于轻度离散; 离散度介于3%- 5%, 电池组处于中度离散; 当离散度高于10%时, 电池组处于重度离散,此时单体电池的性能严重不一致, 应考虑更换电池。
电池组的极限离散度越大, 则表明电池组中个别电池单体出现不一致的趋势越大。正向极限离散度越大, 整组电池的充电接受能力越小; 负向极限离散度越大, 整组电池的放电能力越差。
根据上面的分析, 图7 所示的电池组属于轻度整体离散, 应考虑对单体15 号、单体38 号等进行更换或者补充电, 以提高该电池组的放电能力。3.2 电池模块的动态离散特性建模
动力电池组的工作特征取决于电动汽车的动力结构型式和控制策略, 在典型的城市行驶工况中, 动力电池组处于频繁往复的不同倍率充放电, 电池的极化电压得不到恢复。锂离子电池充放电时发生极化, 由于欧姆极化和正极和负极的活化极化、浓差极化的存在, 电池工作端电压可由式( 9) 确定。
式中, U 为电池端电压; E 为电池电动势, R 为极板欧姆电阻, Re 为电解液欧姆电阻, I 为工作电流, η为过电位。从式( 9) 可以看出, 电池工作电压主要是由电池内部极化决定的, 在串联电池组中
- 具扩展频谱频率调制的低EMI DC/DC稳压器电路(12-24)
- EMI/EMC设计讲座(三)传导式EMI的测量技术(07-20)
- 扩展射频频谱分析仪可用范围的高阻抗FET探头(07-14)
- 开关电源基于补偿原理的无源共模干扰抑制技术(08-27)
- 开关电源的无源共模干扰抑制技术(11-12)
- 省电设计使DDS更适合便携应用(12-19)