微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 绿色传感网中智能抄表系统设计

绿色传感网中智能抄表系统设计

时间:12-08 来源:互联网 点击:

表、采集器、集中器、数据处理中心以及多种抄表终端。在通信网络上,AMI包括用户户内网络(HAN)、智能电表与采集器之间的网络、采集器与集中器之间的通信网络(LAN)、数据集中器与数据处理中心的网络(WAN)和客户端访问数据处理中心的网络。智能电表作为实现AMI的基础性设备,其设计和生产使用受到了业界的广泛关注。2009年11月,中国国家电网公司发布了智能电表新标准,并于2010年首次集中招标智能电表2,000余万只。在未来几年内,我国计划安装1.3亿只智能电表,智能抄表总投资将达到380亿元。

  2 电表部分的设计

  智能电表在硬件系统设计上分为几个主要模块,包括:计量模块、处理器模块、RTC时钟模块、显示模块、存储模块、通讯模块和电源模块等。其中通讯模块涉及到RS485、电力线载波、短距离无线通信等多种通讯方式的选择。整个电表的系统设计框图2所示。

  2.1 计量模块

  计量模块是智能电表的核心模块之一,将电流采样和电压采样所得的信号进行运算,得到能量当量脉冲、电能品质参数等。计量芯片采用STPM01。该芯片前端集成了模拟的电流电压采样、放大、滤波和幅度、相位补偿单元,后端则是DSP处理单元和SPI接口,可以计算出有功电能、无功电能、视在电能、电网频率、电压有效值和瞬时值以及电流有效值和瞬时值。计量模块结构如图3所示。

  STPM01与处理器构成主从机模式计量方案。信号经过SPI口,通过ADUM1411四通道隔离器,连接至MCU的SPI管脚。MCU将初始化及校表信号发送给该计量模块,修改其配置位APL、KMOT、Mdiv、TMP等。STPM01则将配置状态信息、计算测量数据发送给MCU模块。此处,设置APL位为0,使电压过零信号在MOP管脚输出,看门狗信号在MON管脚输出。配置KMOT位,在光耦隔离后输出3000Pulse/kWh的视在功率脉冲。校表时,MCU向计量芯片的56位OTP存贮器写入预设校表数据,需要修改时则可以在处理器模块中调整参数值,再重新写入。

{$page$}
  2.2 MCU模块

  处理器采用STM32F103,为基于Cortex-M3内核的32位微处理器,64管脚。处理器工作频率为72MHz,内置128K
字节的Flash存储器和20K
字节的SRAM。可采用7路通用DMA直接管理存储器到存储器、设备到存储器和存储器到设备的数据传输。电表的MCU模块结构图如图4所示。

  该模块以处理器为核心,从SPI口接收STMP01送来的状态信号和能量信息,通过I2C口扩展EEPROM存储设备M24512R和RTC时钟M41T83,通过USART接RS485通讯。在驱动LCD模块时,除公用初始化引脚RESET外,还使用了6个处理器管脚作为控制端,其中PB2作为LCD背灯控制端,PB8脚为定时器引脚,作为LCD信号中断请求使用。另外,按照STM32
的特 性,设置BOOT0,BOOT1两位值设为0X时,模式为读取主闪存;设为11时,模式为读取内置SRAM。

  2.3 通讯及接口卡模块

  方案设计了RS485、电力线载波、红外三种通信方式。其中电力线载波采用ST7570集成载波通讯芯片。接口设计了ESAM卡、Smart
Card以及miniUSB接口。其中,红外通讯的电路图如图5所示。

  2.4 电源模块

  电源采用开关电源结构,其设计示意图如图6所示。市电经过雷击、过流保护、过压保护,滤波,整流进入高频变压器,从变压器二次侧分成三路绕组,分别经KF50B电压调节器稳压后引出。一路给RS485通讯部分供电;一路又分为两支,+12V一支直接给继电器和电力载波供电,另一支经DC-DC变换后给MCU、唤醒电路供电;第三路则给隔离、比较器及其他部分模块供电。控制开关部分采用VIPER27芯片,集成了一个电流PWM开关和N沟道的MOSFET,最小击穿电压为800V。二次侧分成三路绕组引出,增加了一定的布线难度,但是简化了电路模块间的隔离。为减小电磁干扰,在输出+12V绕组接一个330pF/100V电容,+5V输出绕组接入330pF/2kV电容,在PG与地之间还单独并入防串扰电容。

  2.5 软件部分设计

  结合计量芯片的底层驱动程序,分模块进行电表的软件设计。软件主要由初始化和系统管理主程序,时钟模块程序、显示模块程序、电源管理程序、通讯模块程序和事件告警程序组成。其中通讯中的电力线载波、红外按照用电部门既定规约通信。事件告警程序监控电表的过载、窃电和开盖等事件。

  3 wireless HART及抄表通信
{$page$}

  绿色传感网各个层次已经有众多的协议,如Direct
Diffusion,LEACH,S-MAC,ZigBee等等,配合拓扑结构,能够提供丰富的冗余路径,可以提高数据传输的可靠性,增强网络抵抗环境干扰的能力。随着AMI技术的发展,绿色传感网用于智能抄表将是新趋势,但是大多数无线抄表基于私有的通信协议,而wirelessHART建立在HART之上,是当前工业界使用最广泛的国际标准。该协议与ZigBee的比较见表1。wirelessHART具有比ZigBee更高的可靠性、安全性以及更低的设备功耗,本设计中,采集器、集中器均用STM32F103处理器和CC2520收发机芯片。集中器则增加GPRS模块,作为抄表远程通信信道。抄表网络结构示意图如图7所示,
每一个采集器悬挂16个智能电表单元,同时具有路由功能。网关为采集器现场设备和管理主站提供接口,向下通过wirelessHART无线网络收集采集器的电表数据,向上通过GPRS将数据上传到电力部门应用管理主机。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top