微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 高频机型UPS的几个“致命弱点”论值得商榷(二)

高频机型UPS的几个“致命弱点”论值得商榷(二)

时间:12-18 来源:互联网 点击:

还有的说什么零地电压可导致后面的数字机器出现误码或丢码。这又是一个基本概念问题。众所周知,UPS供出的交流电压是给包括计算机在内的电子设备内部电源的,这个内部电源的任务就是将交流电压变换成内部电路所需的直流电压,而且电子设备的内部电路只和本机的电源打交道,所以本机电源的质量好坏才直接影响着本机电路的工作质量。用电机器的误码不误码和UPS没有任何关系!因为那是用电设备机内电源的事情。所以在这里零地电压不是干扰源。

(2)传递干扰的通道:零地电压是如何传递到负载机器上去的

退一万步说,假设零地电压是干扰源,现在看一看它如何能加到负载上去。图9给出了零地电压的等效电路。在这里取出UPS中的一相电压UA作为例子。将零线上的分布电阻用集中参数RN代替,负载电阻是RL,于是负载和零线就是跨接在电源UA两端的两个串联的阻抗。

两个阻抗上的电压之和就是电源电压,即:

UL+UN=UA (5)

两个电阻上流过同一个电流Ia,由于零线敷设完毕后,零线电阻就是个不变的定值,就是电阻负载,对外不会产生任何影响。当然会有人说:流过零线的还有谐波电流,如图中虚线箭头所示。是的,尽管有谐波电流流过,尽管也会使零线上压降有所变化,一方面与220V相比是微乎其微,另一方面它的流向如虚线箭头所示,也不会返回头去倒流到负载。零线上电压降的变化对负载没有任何影响,零线对地的电位就好像浮在水上的船,负载就好像坐在船上的人,无论水平面如何让波动,水涨船高,坐在船上的人本身不会受影响。

还会有的人提出:既然RL和RN是分压关系,会不会由于RN上分压太多而影响负载的正常工作呢?一般说任何负载都允许输入电压变化±10%,而220V的±10%就是±22V!

图9 零地电压的等效电路

在零线上出现22V的压降几乎是不可想象的,如果真有这么大的零线压降那肯定是出问题了。因为在UPS机柜范围内的零线汇流排上,正常情况下一般绝不会出现3V以上的压降,一般都小于1V。还有一种情况就是:由于UPS输出端的低通滤波器特性不好,有一部分高次谐波流入负载。其实这也无妨,负载机器的内置电源输入端都接有滤波器,首先将高次谐波拦截,第二级就是整流滤波器进行拦截,第三级就是直流变换器。这三道大门可将任何高次谐波甚至干扰关在门外或给予消灭。正因为负载机器内部电源具有如此强大的功能,莫须有的给零地电压扣上“干扰负载”的帽子,实在是无中生有。

就是说,没有任何一条通路能把零地电压和干扰加到负载上去。更何况零地电压不是干扰源。当然,空间干扰就是另一回事了,不属于这里讨论的范畴。

(四)高频机型UPS在市电断电后,电池放电时系统效率降低2%

有的地方说得非常具体,看来是做了实地测量。遗憾的是他把部分高频机UPS当成了全部,再说这个结论还存在漏洞。下面分几种情况介绍。

1. 单相小功率UPS情况

图10示出了一般小功率高频机UPS原理电路图。因为高频机UPS的特点之一就是取消了输出隔离变压器,所以能取消这个占机器绝大重量的变压器就是因为采用了半桥逆变器。但半桥逆变器的工作需要两个直流电源,而对于功率不大的高频机UPS的两个直流电源尤其是采用两组电池就显得太累赘了。于是就采用了Boost升压电路技术。如图中储能电感L,电子开关S,隔离二极管VD2,虚拟电源电容器C1和C2就构成了升压电子变压器。在由市电供电时,整流器ZL1和充电器为电池组GB充电,整流器ZL2为主电路供电,由于220V交流只能给出约300V的直流电压,而半桥逆变器则需要两个至少310V以上的直流电压。所以Boost升压电路就在电容C1和C2上造成两个约400V的串联连接的虚拟直流电源。

图10 一般单相小功率高频机UPS原理电路图

当市电断电时,就由电池组GB放电。一般在10kVA 以下或30kVA以下容量情况下,电池组GB的电压比较低,比如3节12V,4节12V…甚至10节12V。总之,电压远达不到半桥逆变器工作的电平。因此还必须仍由Boost升压电路将其升高到两个400V。就是说,市电尽管停止了供电,这里工作的不像工频机UPS那样仅由逆变器工作,Boost升压电路还必须接着工作。这样看来高频机就比工频机多了一个工作环节,所以就比工频机逆变器多消耗能量,就算效率就降低了2%。

但有的问题提出者顾此失彼,只顾比较电子电路部分并高兴找到了高频机UPS的“软肋”(所谓致命弱点),岂不知却忘记了工频机UPS的输出隔离变压器也在工作着,如图11(a)所示。该变压器上消耗的功率远不是2%就可以打发的。笔者曾对对4台进口100kVA UPS的输出变压器满载时的测量发现,100kVA变压器铁心外表

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top