RFID包装箱标签天线设计
图9 新RFID标签( Ⅱ)侧面图
同样的,假设包装箱壁厚度为1 mm,εr = 3. 3,d = 200 mm,以h和介电常数ε′r为参数,用IE3D工具仿真在915MHz频段上物品介电常数对新RFID标签天线(Ⅱ)电阻和电抗的影响,如图10和图11所示。
图10 ε′r对标签天线( Ⅱ)电阻R天线Ⅱ的影响
图11 ε′r对标签天线( Ⅱ)电抗X天线Ⅱ的影响
从图10和图11中可以看出,空气层和金属层面积扩大一倍后,天线的电阻变化曲线明显得到改善,当h≥2 mm时,新标签( Ⅱ)天线阻抗的电阻和电抗变化曲线平缓,波动范围不超过5%。由此可见,标签天线( Ⅱ)的阻抗只与天线的结构和空气层厚度有关,包装箱内的物品种类对其影响不大。采用RFID 标签( Ⅱ)结构,可以实现与包装箱内物品种类无关的通用"RFID 包装箱"。
3 实物测试与结果
根据上述仿真结果,采用标准白卡纸(εr =215) ,电镀铝箔成型制作了h = 2 mm的RFID 标签( Ⅰ)和( Ⅱ)两种标签天线结构,如图12所示。
图12 RFID 标签天线实物
选择箱壁厚度为1 mm,εr = 2. 2, d = 175 mm的包装箱作为测试环境,待测标签天线内附在包装箱壁,在包装箱内均匀填充空气(介电常数为1) ,复印纸(介电常数为2. 5) , PET塑料(介电常数为4. 2)和食盐(介电常数为6. 2) ,使用矢量网络分析仪Agilent 8753ET测试在上述介电常数的物质填充情况下,在915MHz频段上图12中的RFID标签天线的阻抗测量值,如表1和表2所示。
由表1和表2可以看出,在不同介电常数的物品影响下, RFID 标签天线(Ⅰ)和标签天线(Ⅱ)的阻抗测量值均保持不变。其中, RFID 标签(Ⅱ)天线电阻和电抗始终保持在20Ω和800Ω左右, 基本接近常用的 RFID 标签芯片阻抗目标,具有很高的应用价值。
4 结束语
本文通过仿真手段模拟包装箱内的介质环境,研究了介质环境对附着在包装箱内壁的 RFID 标签天线的影响。仿真结果表明纸基包装箱壁和包装箱内的物品是影响 RFID 标签天线的两大主要因素,需要根据特定的包装箱和所包装的物品订制 RFID 标签天线。包装箱内物品的容积和等效介电常数对 RFID 标签天线的阻抗有非常大的影响。为了减少 RFID 标签天线的设计工作量,本文设计并改进了一种悬置微带多层介质结构的 RFID 标签天线,通过增加空气层和金属层隔离了包装箱内物品对 RFID 标签天线的影响,并最终通过实际制作和测试,证实了上述 RFID 标签结构的可行性,使得"通用型" RFID 包装箱成为可能,具有广泛的应用前景。
- 无源RFID标签芯片灵敏度测试方法研究(06-24)
- 基于UHF RFID标签芯片PIE解码电路的实现方案(09-08)
- RFID标签天线的研究现状及热点问题探讨(05-08)
- Mesh、ZigBee、RFID让网络无处不在(11-24)
- RFID标签在超高频全球标准的认证之路(11-09)
- RFID相关技术专利分析(一)(11-09)