白颜色LED原理简介
追求高效节能,绿色环保和显示性好的电光源是科技界持之以恒的目标。
从上个世纪60年代开始,LED以惊人的时代得到迅速发展,特别是进入21世纪以后,LED的发展取得了更加令人鼓舞的成就。LED在显示屏、信号灯、液晶背光源以及取代其他小功率光源上,和其他电光源比上体现出无可比拟的优越性。但是,在目前白颜色大功率LED的发展上,混肴了普通LED和白颜色LED之间的基本属性,错误的把普通LED的优点转移白颜色LED上,误认为白颜色LED的使用寿命、发光效率能够和普通LED一样,过高估计了它的光效,在电光源领域神化了其功能,似乎只要用了LED 就是高科技,LED 可以解决一起照明问题;使用LED的项目就能够得到政府的支持,不使用LED的项目就不能够得到政府的支持;忽略了白颜色LED是半导体荧光灯的基本实质。下面我们简单介绍目前白颜色LED(半导体荧光灯)的发光机理。
图1 白颜色LED(半导体荧光灯)的发光机理
从图1可以看到白颜色LED(半导体荧光灯)是由蓝光PN结周围的荧光粉发出的白光,通常荧光灯是由灯管内的紫外线激发荧光粉发光的,在发光原理上它们完全一致,如图2所示,区别在于普通荧光灯的灯丝由蓝光PN结取代。图3(c)指示出它的工作原理。另外还有通过紫外线LED激发荧光粉产生白光的半导体荧光灯,如图3(b)所示。
图2 普通荧光灯的发光原理
LED和目前我们使用的白炽灯、气体放电灯的发光原理迥然不同。LED的自发性发光是由于电子和空穴的复合而产生的,这种半导体P-N结的电致发光机理决定了它发出的是单色光,而不可能产生具有连续谱线的白光,用单只LED也不可能产生两种以上的高亮度单色光。如果需要LED产生白光,只可能先让LED发出蓝光,然后利用荧光粉间接产生宽带光谱,合成白光。
将某种形式的能量转化为光能的过程是一种量子转换过程遵守能量守衡定律。发光过程中的量子效率、量子提取率以及辐射光子的能谱决定了该过程的光效。白光光源运转时所经历的量子转换过程愈多、能量的损失愈大,光效必将降低。
LED发光时载流子复合过程的量子转换效率虽然很高。但是必需利用荧光粉进行第二次量子转换才能转化为白光LED,因而量子效率和量子提取率大为降低,使白光LED光效提高受到限制。
各类荧光灯包括高频无极荧光灯虽都属低气压放电灯,高效率的利用汞的谐振辐射将电能转化为辐射能量,但是由于这种谐振谱线处在紫外区,必须利用荧光粉进行第二次量子转换才能变成可见光,而第二次量子转换效率只有46%、而荧光粉吸收又使量子提取率下降,所以连续二次的量子转换过程使荧光灯的光效限制在90~100 lm/W左右,按目前的结构和材料其极限很难超过120 lm/W。
还有一点值得注意的是常规光源的发光中心处于灯的中央,光辐射在4π立体角中均匀分布,与照射空间一致,量子提取率近于100%。LED是一种平面固体光源,只有外向(2π立体角或更小角度)的光子能够出射,所以常规LED 的50%的内向辐射光子大部分消失在芯片内部发热,量子提取率很低;LED的输出窗为多层不同的固体介质,粒子密度很大,光子在其中传播时吸收系数较大,不同介质层交界面处的反射亦使其量子提取率降低。当前结构的LED的这些特点是无法改变的,因此光效的提高受到了限制。不要幻想白光LED的光效能提高到140lm/W以上,除非是单色黄光LED或另一种全新结构的LED,例如:如能开发一种三能级(红绿蓝)型LED,这种LED的n型半导体或p型半导体中有三个以上不同施主能级或受主能级存在,当载流子复合时直接产生适当比例的红、绿、蓝三色光子因而直接发射白光。省去荧光粉的第二次量子转换过程当可使LED光效得到较大提高。但是LED单侧发光的特点是无法改变的,限制光效大幅提高的这一因素只能设法降低,不能完全取消。
降低白光LED光谱中的蓝光成分是十分必要的,虽然这将降低它的光效,过多的蓝光易造成视觉疲劳且伤及视见膜。在这一点得到改进以前很难大规模进入家庭与紧凑型荧光灯竞争。
从任何一个角度分析目前这种结构的白光LED(半导体荧光灯)的最高光效决不可能超过140lm/W。据测试,当前市售白光LED(半导体荧光灯)的最大总光子转换效率约在15~25%之间,光效约为45~80 lm/W,稳定工作时实际光效常常都在60 lm/W以下。白光LED(半导体荧光灯)的光效已经达到160lm/W或200lm/W的报导是不可靠,或许他们的测试出了差错,至于400lm/W的预言对于白光LED(半导体荧光灯)是荒唐的、即使对中心发射波长为555的黄光LED也失之过高。
未来真正的白光LED应该是将红、绿、蓝或者更多颜色LED芯片封装在一起,产生白颜色光的白光
- 数字电源简介(08-18)
- 隔离电源简介(03-09)
- 电池分类简介(01-19)
- 锂聚合物电池的概念及参数简介(12-08)
- UCC38083/84的芯片简介(11-18)
- 低压差稳压器(LDO)应用简介(11-03)