基于TD-SCDMA的高性能接收机设计方案
在中国,时分同步码分多址(TD-SCDMA) 作为宽带CDMA(WCDMA)的替代标准,正试图在各种环境下提供比WCDMA更好的覆盖率。WCDMA是专门针对对称业务和宏单元站点优化了的一种标准。为了支持TD-SCDMA技术,业界已经成功开发出带数字中频(IF)级电路和多个有源天线模块的紧凑型多通道TD-SCDMA接收机。这种灵巧的设计支持多载波、分集接收机系统中的各种应用。仿真和实验结果表明,这种紧凑型接收机具有杰出的线性度和相位-噪声性能。
2000年5月,由中国电信科学技术研究院(CATT)推荐的TD-SCDMA技术被国际电信联盟(ITU)采纳并批准为第三代(3G)移动通信标准之一。TD-SCDMA拥有许多先进的访问技术,它们有效整合了时分多址(TDMA)、频分多址(FDMA)、码分多址(CDMA)和空分多址(SDMA)方法。TD-SCDMA系统中的上行链路和下行链路业务共享相同的频带但不同的时隙。因此,TD-SCDMA非常适合不对称数据服务,并能提供很高的频谱效率。TD-SCDMA系统中采用的关键技术包括复用、智能天线和联合检测技术。
为实现简单灵活,TD-SCDMA接收机的中频部分采用数字电路进行设计。与标准超外差式接收机相比,它的模数转换器(ADC)模块被转移到了中频输出端口。通过用数字器件替代模拟器件,数字中频接收机能够更加灵活地处理宽带频率范围和多种无线通信标准。
接收机分集技术常用来减小影响无线通信性能的多径和瑞利衰落效应。主要的分集技术有频率分集、时间分集、天线分集、角度分集和极化分集。
TD-SCDMA接收机应用天线接收分集技术可提高链路增益。接收机利用这种方法收集多路不相关的射频信号,然后进行合并,并在合并过程中减小甚至消除衰落和多径效应产生的影响。典型的线性分集合并方法有选择性合并(SC)、最大比例合并(MRC)和等增益合并(EGC),这些方法各有优缺点。
TD-SCDMA中采用的多载波技术可提高这种格式的数据容量和传输速率,以支持高数据速率的无线服务。多载波TD-SCDMA系统中的每个特定蜂窝采用三种不同的频率作为载波频率,其中一个频率被称为主频,另外两个被称为辅频。主频和辅频之间的区别在于它是否承载导频和广播信道(BCH)信息。主频要处理导频和BCH信息,辅频不需要。寻呼指示信道(PICH)和辅助公共控制物理信道(S*CH)只能在主频中配置。
图1:TD-SCDMA通信系统的典型信道结构采用了主载波和副载波。
图1显示了一个典型的TD-SCDMA射频信道。这个信道包含三个载波,这些载波使用相对1.6MHz的载波带宽来说较低的1.28Mchip/s芯片速率。TD-SCDMA有助于提高频谱利用和网络设计的灵活性,特别是在人口密集的地区。另外,在5ms时间内每个TDMA帧被分成7个时隙,这些时隙可以灵活地分配给多个用户,或分配给需要多个时隙的单个用户。
图2给出了带数字中频电路和多个有源天线模块的多通道TD-SCDMA射频接收机的系统架构。该系统包含三个有源天线模块和一个射频接收机模块,而后者又由三个独立的射频接收通道组成。有源天线模块包含一个6dBi增益的全向天线、一个射频带通滤波器和一个低噪声放大器(LNA)。每个通道则包含射频放大器、下变频器、本地振荡器(LO)、中频声表面波(SAW)滤波器、受基带处理单元控制的可变增益放大器(VGA)和中频放大器。
图2:带数字IF级和多个有源天线模块的TD-SCDMA RF接收机结构框图。
这种接收机支持多种连接机制。在第一种机制中,只有一个有源天线模块连接到接收机的全部三个通道,这时的接收机用作多载波TD-SCDMA接收机。在第二种机制中,三个有源天线模块分别连接到接收机的三个通道,用作接收分集TD-SCDMA接收机(如图2中的虚箭头线所示)。在这种情况下,有源天线模块之间的距离必须足够远,以正确接收到接收信号的不同传播延时。通常两个天线之间至少间隔5倍波长的距离,才能使接收到的信号具有显著不同的衰落特性。在第三种连接方案中,三个有源天线模块连接到三个多通道射频接收机模块,用作分集接收机和多载波TD-SCDMA射频接收机。
为*估TD-SCDMA接收机性能,必须更深入地了解它的基准灵敏度和快速自动增益控制(AGC)电路的功能。基准灵敏度是接收机的最重要指标。一般来说,它指的是系统在达到要求误码率(BER)条件下天线端口的最小输入功率电平。该指标还受到以下一些因素的影响:接收机的噪声系数、发射机的本底噪声、同相/正交(I/Q)增益不平衡、I/Q正交相位不平衡、本振(LO)相位噪声、电源电压噪声、线性相位失真和线性幅度失真。
接收机的噪声系数和发射机的本底噪声展示了附加白高斯噪声(AWGN)带来的影响,而结合噪声系数可以用来描述这两种情况。在时分-双
设计 方案 接收机 高性能 TD-SCDMA 基于 相关文章:
- 3D IC设计打了死结?电源完整性分析僵局怎么破(09-21)
- 快速调试嵌入式MCU设计仿真的三大因素浅析(12-12)
- 访问电源参考设计库的众多理由(12-09)
- 开关电源设计中如何选用三极管和MOS管(12-09)
- 一款常见的车载逆变器设计电路图(12-09)
- 电子工程师必备:电源设计及电源测评指南(12-09)