微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 射频工艺和手机射频元件的集成

射频工艺和手机射频元件的集成

时间:01-14 来源:互联网 点击:

所占面积相对于数字部分将随不同的技术代而增加。

在单芯片上集成数字和RF功能的其它困难还有:
1. 必须控制数字和RF部分之间通过基底产生的串扰;
2. 采用高级CMOS工艺的掩膜成本很高,而将数字和RF集成由于RF设计的原因必然会导致很多次的设计迭代,将导致成本增加;
3. RF IC产量通常由设计所决定,数字IC由参数决定,因而集成数字和RF功能的集成电路的产量将低于数字IC;
4. 数字CMOS封装产生的高引脚电感将降低RF效率。

从技术上讲,短距离高频系统的最佳解决方法是采用多芯片封装和模块,其中数字和RF功能采用独立的IC和BiCMOS工艺来实现。这些方案对于那些既具有设计能力又有生产封装能力的厂商来说是可行的,但是,多芯片封装,尤其是模块对于那些依靠代工厂的无晶圆厂来说并不容易实现。因此,这些公司将可能向在单片上集成数字和RF功能的方向发展。

\

图2 CDMA RF前端功能框图所示

无线系统还需要天线和用于波段选择的切换器件、Tx-Rx切换和天线分集,如图2的CDMA RF前端功能框图所示。为了嵌入这些器件,通常采用多片封装的方式而非模块集成。

低频集成

对于2.4GHz以下的应用,蜂窝系统是最广泛和最重要的应用。蜂窝手机要求成本低和尺寸小,需要更高的集成度。此外,蜂窝系统具有严格的性能和成本等要求,所使用的元器件种类很多。

蜂窝系统的接收器端需要高灵敏度和选择性,一般采用一个接收滤波器,如声表面波(SAW)滤波器来实现;采用低噪声放大器(LNA)来实现大的信噪比,其中的电感器用于发射器以实现噪声和增益匹配之间的最佳平衡,通常将这种LNA功能集成在单芯片收发器IC上;基带功能总是在主流CMOS IC中实现;收发器功能传统上是采用BiCMOS工艺,但是CMOS工艺正引起越来越的关注。同时,多频带/系统集成也在不断发展。

另一个挑战是发送(TX)路径,这些全向非点对点传输系统要求24-33dBm的高输出功率。从易用性、效率和性能上来看,功放(PA)功能选择的技术是硅(Si)双极或GaAs HBT(Si LDMOS)。在最后的放大器级之后,需要一个低损耗输出匹配电路,因为该电路在技术上难以实现集成。该功能经常与分立表面贴装器件一起部分地集成,或通过特殊的低成本无源集成(PI)芯片来实现。

\

图3

低频集成所使用的技术包括PA用的GaAs HBT,PA驱动器用Si BiCMOS,用于输出匹配的偏置级和功率控制环路的Si PI芯片。现在的手机是多频带和多模式,需要在PA、接收通道和天线之间有大量的切换和滤波功能。开关器件通常是采用GaAs pHEMT或p-i-n二极管以及RF-MEMS来实现。双工滤波器(RX-TX分开),用于波段选择的同向双工滤波器和谐波滤波器组成天线的无源前端部分。多波段PA模块之后的前端集成TX-FE模块。

在无源前端之后全部是无线模块,该模块加入了收发器功能。把所有这些技术以更高性价比集成到蜂窝系统里极富挑战性。收发器功能(包括LNA)可以采用片上系统实现,但接收滤波器仍需要放在芯片之外,PA和RF前端通常不能放在一个芯片上。一般而言,挑战来自于无源元件和多技术封装,一般选择在LTCC或有机基底上的模块集成。

减少无源元件和推动无源集成的一个关键技术是PASSI技术。采用该技术可以实现145pF/mm2和4%(3σ)的电容器精度,电感的Q因数超过50。该技术还可以作为横向集成p-i-n二极管、高密度电容器和将来的MEMS可变电容器和开关的平台。另一个相关的技术发展是体声波(BAW)技术,该技术能够替代滤波器中的陶瓷和SAW技术。BAW技术可以有几种实现方法,其中一种如图4所示。

\

图4

采用SAW技术的优势是性能、损耗、热特性、尺寸和成本,特别是在高于1GHz的频率时,SAW技术要求使用亚微米光刻。由于采用亚微米结构,在2GHz以上SAW滤波器的损耗将迅速增加,但BAW技术至少可以在高达10GHz的频率下应用。由于增加了额外的掩模和合格率相关的成本问题,在BiCMOS工艺上采用BAW技术可能并不具有太多的优势。

图5

将RF功能和完整的系统解决方案外包正成为一种新的商业模式,上面谈到的前端集成化趋势将进一步发展,未来将涉及基带和功率控制环路、匹配、RF切换和滤波器等,提供一个完整的RF系统解决方案。当这些功能完全成熟,且OEM厂商接受这种产品后,这种完整系统方案将大量应用。上面所述的前端集成的发展趋势还将延伸到基带和电源管理领域。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top