零转换PWM DC-DC变换器的拓扑综述
时间:01-16
来源:互联网
点击:
1 引言
为了减小功率变换器的体积、重量和开关损耗,提高开关频率和工作效率,在DC-DC变换器中常采用软开关技术,以实现主开关管的零电压(零电流)开通或关断。具体的方法有四种: 零电压准谐振变换器(ZVS-QRC),零电压多谐振变换器(ZVS-MRC),ZVS-PWM变换器和零转换PWM变换器。
一般而言,ZVS-QRC变换器[1]电压应力较大,且电压应力与负载变化范围成正比;ZVS-MRC变换器[2]也具有较大的电压应力和电流应力;ZVS-PWM变换器[3]则因串联谐振网络而导致大的导通损耗。而零转换PWM变换器则不同,它克服了前面三种结构的缺点,电路性能大为改善。其电路结构的特点在于:它的谐振网络与主开关管并联;在开关转换期间,谐振网络产生谐振,获得零开关条件;在开关转换结束后,电路又恢复到正常的PWM工作方式。这种电路结构给其带来了四个方面的优点:(1)功率开关器件工作在软开关条件下,承受的电压、电流应力较低;(2)在整个输入电压和负载范围内,都能较好地保持零电压特性;(3)辅助谐振网络并不需要处理很大的环流能量,因此电路的导通损耗较小;(4)采用PWM控制方式,实现了恒频控制。
由于零转换PWM电路的突出优点,使其得到了广泛研究和应用。最近几年里,出现了许多新的零转换PWM拓扑结构,其中以ZVT-PWM变换器的一些改进、ZCT-PWM变换器、以及ZCZVT-PWM变换器等几种特色比较突出。本文将对这几种拓扑结构作简要介绍,重点分析它们的工作原理,并剖析它们的优缺点。
2 ZVT-PWM变换器及其改进
2.1 普通的ZVT-PWM变换器
图1
图1所示是文献[4]提出的普通Boost ZVT-PWM变换器的拓扑结构。它在主开关管S之上,并联了一个由谐振电容Cr(其中包含了主开关S的输出电容和二极管D的结电容)、谐振电感Lr、辅助开关S1及二极管D1组成的辅助谐振网络。
在每次主开关管S导通前,先导通辅助开关管S1,使辅助谐振网络谐振。当S两端电容电压谐振到零时,导通S。当S完成导通后,立即关断S1,使辅助谐振电路停止工作。之后,电路以常规的PWM方式运行。该拓扑结构在不增加电压/电流应力的情况下,实现了S的零电压导通和D的零电流关断。但由于S1是在大电流(接近谐振峰值电流)下关断、大电压(接近输出电压)下开通, S1处于一种非常不好的硬开关环境。
为了解决普通ZVT-PWM变换器的以上缺点,近几年中人们提出了几种改进的ZVT-PWM变换器拓扑结构,它们均实现了主开关管和辅助开关管的软开关,减少开关损耗。下面对这几种改进结构分别予以介绍
2.2 改进拓扑之一
图2
图2所示为文献[5]提出的一种新颖的ZVT-PWM变换器拓扑。与图1的普通ZVT-PWM Boost变换器相比,该改进的拓扑只是在辅助谐振网络中增加了一个电容和两个二极管,但却同时实现了主开关管T1和辅助开关管T2的软通断,以下对其工作过程进行分析。
在分析中,假定:(1)输入电压为常数,主电感足够大,输入电流
为常数;(2) 输出电容足够大,输出电压为常数; (3)谐振电路是理想的;(4)缓冲电感;(5)忽略半导体器件的电压降和寄生电容;(6)忽略其它二极管的反向恢复时间。
设初始状态为:主功率开关管及辅助开关管均为关断状态,输出整流二极管处于导通状态。。电路在稳态时,每个开关周期的工作过程可分为7个模态:
模态1在时刻,导通,线性下降,线性上升,直到,,该模态结束;
模态2在时刻,达到最大反向恢复电流,主二极管关断,开始谐振,直到放电到零,转到模态3;
模态3在时刻,自然导通;
可见,该拓扑结构实现了主开关管T1和输出整流二极管DF在零电压下导通和关断,辅助开关管T2在零电流下导通和零电压下关断,两个开关管都是软通断,克服了普通ZVT-PWM变换器的辅助开关管为硬通断的缺点,减少了关断损耗。
2.3 改进拓扑之二
图3
图3所示为文献[6]中提出的另一种新颖的ZVT-PWM变换器拓扑。与图3的普通ZVT-PWM变换器相比,该改进的拓扑只是在辅助谐振网络增加了一个电容,少了一个二极管。以下对其工作过程进行分析。
在分析中,假设与1.2基本相同,并设初始状态为:,则电路在稳态时,每个开关周期可划分为7个模态:
可见,该拓扑结构实现了主开关管 在ZVS条件下通断,辅助开关管 在零电压、零电流的条件下关断与开通,两个开关管都是软通断,改善了开关环境,克服了普通ZVT-PWM变换器的辅助开关管为硬开关的缺点,减小了关断损耗。
2.4 改进拓扑之三
图4
图4所示为文献[7]提出的另一种改进的ZVT-PWM变换器拓扑。与图4的普通ZVT-PWM变换器相比,该改进的拓扑只是在辅助谐振网络增加了一个电感、一个二极管和一个电容。其工作原理的分析与前面的基本相似,具体分析可以参考文献[7]。从中可知,主开关管S1在零电压下开通和关断,辅助开关管S2在零电流下开通和关断,从而克服了普通的ZVT-PWM变换器辅助开关管为硬开关的缺点,减小了开关损耗,实现了两个开关都是软开关。
3 ZCT-PWM变换器
3.1 普通的ZCT-PWM变换器
为了减小功率变换器的体积、重量和开关损耗,提高开关频率和工作效率,在DC-DC变换器中常采用软开关技术,以实现主开关管的零电压(零电流)开通或关断。具体的方法有四种: 零电压准谐振变换器(ZVS-QRC),零电压多谐振变换器(ZVS-MRC),ZVS-PWM变换器和零转换PWM变换器。
一般而言,ZVS-QRC变换器[1]电压应力较大,且电压应力与负载变化范围成正比;ZVS-MRC变换器[2]也具有较大的电压应力和电流应力;ZVS-PWM变换器[3]则因串联谐振网络而导致大的导通损耗。而零转换PWM变换器则不同,它克服了前面三种结构的缺点,电路性能大为改善。其电路结构的特点在于:它的谐振网络与主开关管并联;在开关转换期间,谐振网络产生谐振,获得零开关条件;在开关转换结束后,电路又恢复到正常的PWM工作方式。这种电路结构给其带来了四个方面的优点:(1)功率开关器件工作在软开关条件下,承受的电压、电流应力较低;(2)在整个输入电压和负载范围内,都能较好地保持零电压特性;(3)辅助谐振网络并不需要处理很大的环流能量,因此电路的导通损耗较小;(4)采用PWM控制方式,实现了恒频控制。
由于零转换PWM电路的突出优点,使其得到了广泛研究和应用。最近几年里,出现了许多新的零转换PWM拓扑结构,其中以ZVT-PWM变换器的一些改进、ZCT-PWM变换器、以及ZCZVT-PWM变换器等几种特色比较突出。本文将对这几种拓扑结构作简要介绍,重点分析它们的工作原理,并剖析它们的优缺点。
2 ZVT-PWM变换器及其改进
2.1 普通的ZVT-PWM变换器
图1所示是文献[4]提出的普通Boost ZVT-PWM变换器的拓扑结构。它在主开关管S之上,并联了一个由谐振电容Cr(其中包含了主开关S的输出电容和二极管D的结电容)、谐振电感Lr、辅助开关S1及二极管D1组成的辅助谐振网络。
在每次主开关管S导通前,先导通辅助开关管S1,使辅助谐振网络谐振。当S两端电容电压谐振到零时,导通S。当S完成导通后,立即关断S1,使辅助谐振电路停止工作。之后,电路以常规的PWM方式运行。该拓扑结构在不增加电压/电流应力的情况下,实现了S的零电压导通和D的零电流关断。但由于S1是在大电流(接近谐振峰值电流)下关断、大电压(接近输出电压)下开通, S1处于一种非常不好的硬开关环境。
为了解决普通ZVT-PWM变换器的以上缺点,近几年中人们提出了几种改进的ZVT-PWM变换器拓扑结构,它们均实现了主开关管和辅助开关管的软开关,减少开关损耗。下面对这几种改进结构分别予以介绍
2.2 改进拓扑之一
图2所示为文献[5]提出的一种新颖的ZVT-PWM变换器拓扑。与图1的普通ZVT-PWM Boost变换器相比,该改进的拓扑只是在辅助谐振网络中增加了一个电容和两个二极管,但却同时实现了主开关管T1和辅助开关管T2的软通断,以下对其工作过程进行分析。
在分析中,假定:(1)输入电压为常数,主电感足够大,输入电流
为常数;(2) 输出电容足够大,输出电压为常数; (3)谐振电路是理想的;(4)缓冲电感;(5)忽略半导体器件的电压降和寄生电容;(6)忽略其它二极管的反向恢复时间。
设初始状态为:主功率开关管及辅助开关管均为关断状态,输出整流二极管处于导通状态。。电路在稳态时,每个开关周期的工作过程可分为7个模态:
模态1在时刻,导通,线性下降,线性上升,直到,,该模态结束;
模态2在时刻,达到最大反向恢复电流,主二极管关断,开始谐振,直到放电到零,转到模态3;
模态3在时刻,自然导通;
可见,该拓扑结构实现了主开关管T1和输出整流二极管DF在零电压下导通和关断,辅助开关管T2在零电流下导通和零电压下关断,两个开关管都是软通断,克服了普通ZVT-PWM变换器的辅助开关管为硬通断的缺点,减少了关断损耗。
2.3 改进拓扑之二
图3所示为文献[6]中提出的另一种新颖的ZVT-PWM变换器拓扑。与图3的普通ZVT-PWM变换器相比,该改进的拓扑只是在辅助谐振网络增加了一个电容,少了一个二极管。以下对其工作过程进行分析。
在分析中,假设与1.2基本相同,并设初始状态为:,则电路在稳态时,每个开关周期可划分为7个模态:
可见,该拓扑结构实现了主开关管 在ZVS条件下通断,辅助开关管 在零电压、零电流的条件下关断与开通,两个开关管都是软通断,改善了开关环境,克服了普通ZVT-PWM变换器的辅助开关管为硬开关的缺点,减小了关断损耗。
2.4 改进拓扑之三
图4所示为文献[7]提出的另一种改进的ZVT-PWM变换器拓扑。与图4的普通ZVT-PWM变换器相比,该改进的拓扑只是在辅助谐振网络增加了一个电感、一个二极管和一个电容。其工作原理的分析与前面的基本相似,具体分析可以参考文献[7]。从中可知,主开关管S1在零电压下开通和关断,辅助开关管S2在零电流下开通和关断,从而克服了普通的ZVT-PWM变换器辅助开关管为硬开关的缺点,减小了开关损耗,实现了两个开关都是软开关。
3 ZCT-PWM变换器
3.1 普通的ZCT-PWM变换器
零转换PWM变换器 ZVT-PWM ZCT-PWM ZCZVT-PWM 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)