微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 高压变频器在同步电动机上的应用

高压变频器在同步电动机上的应用

时间:02-22 来源:互联网 点击:

场更加无法有效牵引转子磁极,最终将导致起动整步失败。选择过大的定子磁场可能导致同步电机的定子铁心饱和,进一步导致变频器输出过电流,电机起动失败。

  较为典型的同步电机起动过程如图1所示。

  4 变频器驱动同步电动机的稳态运行与运行时的励磁调节

  由于变频器驱动同步电机时使用无需安装速度/位置传感器的控制方法,而变频器输出波形为多电平pwm波形,与控制异步电机时的波形相同,因此在运行过程中,变频器可以完全等效于一个正弦电压源,无转矩脉动,具有较高的可靠性。

  由于同步电机的无功电流仅在电机和变频器间流动,不进入电网,因而无须对电机的励磁电流进行精确的控制。一般可在电机运行的典型工况下,手动调节其励磁电流,使变频器的输出电流最小,输出功率因数近似为1,然后在先调速运行过程中维持该电流不变即可。对于需要在运行时实时调整励磁电流的工况,变频器可以实测其输出给同步电机的无功功率,向励磁装置下达励磁给定信号,调整励磁电流。

  5 同步电动机的故障灭磁

  在正常停机时,变频器先驱动同步电机减速至停机转速,然后停止向电机的电枢绕组输出电压。在该转速下,最大的励磁电流在同步电机定子侧感应的电压低于变频器输出侧的长时间耐受电压,因此在电机之后的自由滑行过程中,维持励磁电流不会对设备造成危害,不需要即时灭磁。

  在遇到故障时,如果仅停止向其电枢绕组供电,而维持其励磁电流,则旋转中的同步电机将持续地向其定子侧发出三相交流电压,危害设备安全,并可能造成事故的扩大。因此在遇到严重故障需要停机时,变频器必须通知励磁装置进行灭磁。

  同步电机灭磁的物理过程如下:

  在灭磁之初,在励磁装置的作用下同步电机的励磁电流迅速下降,但由于同步电机的主磁通无法突变,在阻尼绕组(起动绕组)上随即感应出较大的电流,此时旋转中的同步电机向其定子机端(即变频器输出端)发出较高的三相交流电压。随后,阻尼绕组上的电流在阻尼绕组的内阻上逐步衰减为零,同步电机发出的定子电压也随之逐步衰减。这一衰减过程一般为数秒钟,因此变频器的输出端必须具有停机状态下承受短时过电压的能力。

  6 巨化股份公司合成氨厂的现场应用情况简介

  巨化股份公司合成氨厂始建于1959年,是浙江省重要的化肥生产基地和最大的甲醇、甲醛生产厂。此次进行变频改造的是尿素车间的1号co2活塞式压缩机,其相关参数如表1所示:

  驱动压缩机的是一台1000kw/6kv同步电动机,其相关参数如表2所示:

  变频器选用利德华福 hasvert-s06/130同步电机变频调速系统,旁路方案选用一拖一手动旁路柜,如图2所示。

  工频运行时,qs1、qs2断开,qs3闭合,同步电机的起动、运行、停车过程按照原有辑进行。

  变频运行时,qs3断开,qs1、qs2闭合,变频器上电时,断路器qf闭合,经过约15s延时后,励磁装置向同步电机投入励磁电流,然后从现场向变频器下达“启动”命令,变频器按照预设的逻辑向同步电机输出电压,同步电机起动。

  变频停机时,从现场向变频器下达“停机”命令,变频器驱动同步电机减速至停机频率,然后停止输出电压。最后在现场分断断路器qf,由其辅助触点通知励磁装置灭磁,灭磁完成后关闭励磁装置电源。

  遇到故障时,变频器在停止电压输出的同时,立即分断断路器qf,由其辅助触点通知励磁装置立即灭磁。

  7 结束语

  单元串联多电平型变频器在同步电动机上应用的成功实现,扩展了高压变频器产业的应用领域,也扩大了国家能源节约政策的实现途径,为我国建设节约型社会提供了更多的技术保障。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top