ADE7758在新型电能监控系统中的应用与研究
利用ADE7758的底层驱动,实现对三相电、单相电的分时监控,需要编写相应的软件程序。该方案在软件方面采用将电能监控的用户应用程序封装成任务的方法,利用μC/OS-Ⅱ软核进行调度、管理,实现多种监控功能。整体的软件工作流程如图6所示。
用户应用程序是ADE7758软件部分的核心,需要依靠它来获得企业所需单相、三相的电压有效值、电流有效值、有功功率、功率因数以及累计电量。在应用程序中,首先要读取ADE7758各个寄存器的数据,在该方案中需要分别监控单相、三相电能,因此需要在应用程序中进行判断,单相电监控只需要读取AWATTHR(有功功率累计)、AVAHR(无功功率累计)、AIRMS(电流有效值)、AVRMS(电压有效值)和FREQ(输入信号频率)寄存器。三相电还需要读取B相和C相相应的寄存器。特别需要注意,一些与功率有关的寄存器的值为正,则需要对这些寄存器的数据作取绝对值的操作,而电流电压有效值是带符号的,因此不需要作取绝对值的操作,这里需要分别处理。
从ADE7758的功率寄存器读取的值为累计电量,为了获得功率值,需要计算累计时间。该方案使用了移动时间戳的方法,调用μC/OS-Ⅱ提供的OSTimeGet()函数,读取数据之前得到首次的时钟节拍,第二次读取数据之前获得当前时钟节拍,就可以利用两次读取数据的间隔时间,计算得到相应的功率。以上所得的数据为ADE7758内部寄存器的原始数据,用户应用函数还需要结合校准所得的修正系数,对原始数据进行修正,才能最终提供给用户精确的电能监控数据。
4 ADE7758在实际使用中的校准方法
ADE7758的用户手册给出了有关电流、电压有效值通道以及功率计算校准原理和算法,在ADE7758实际使用之前必须经过正确的校准过程,否则会出现较大误差。因为该方案是使用ADE7758分时实现三相、单相电能监控功能,因此校准时首先需要对于两种情况分别设置,对LCYCMODE寄存器和MASK寄存器进行配置。校准单相,LCYCMODE寄存器的第4位置1,MASK寄存器第10位置1,表示允许A相过零检测和过零中断;校准三相,LCYCMODE寄存器的第4,5,6位置1,MASK寄存器第10,11,12位置1,表示三相都允许过零检测和过零中断。ADE7758测量出来的数据用二进制表示,因此第一步校准工作就是完成二进制的转换,即得到LSB(二进制的最低有效位代表的实际数据量),算法为:准确值/测量值=LSB。比如准确值为220 V,从ADE7758的VRMS寄存器读出的数据为二进制表示的浮点数,即测量值。利用上面的公式得到VRMS寄存器的一位最低有效位所代表的电压数值,即LSB。
电流有效值和电压有效值的校准算法为:
式中:IRMS,VRMS为电流、电压测量值;IRMS0,VRMS0为电流、电压准确值;IRMSOS,VRMSOS为需要得到的电流、电压的offset(误差补偿量)。根据该算法,在获得准确值和测量值后,可以得到误差补偿量。该方案在实际校准过程中,为进一步降低误差,采用了更加准确的多次测量求平方根的方法得出测量值,再利用LSB的算法和误差补偿量的算法获得相应的LSB和offset。
之后就是进行功率的校准,包括有功功率、视在功率和无功功率。因为xWG/xVARG/xVAG三相9个寄存器是用来对平均功率进行缩放的,将使功率校准更加精确,但给后续的校准带来巨大的计算量,所以首先需要对它们进行清零;然后就是如同有效值的校准一样,需要设法获得功率的LSB和offset。以有功功率为例,首先设定电流、电压的准确值,然后分别读出AWATTHR,BWATTHR,CWATTHR的三相有功功率累计量。在此还是利用移动时间戳的方法,得到首次的时钟节拍,然后重复前面的读取操作,获得当前时钟节拍,两次时钟节拍相减,得出累计时间:有功功率的准确值=电流准确值*电压准确值/累计时间,利用:LSB=准确值/测量值,得到有功功率的LSB。有功功率的offset计算公式为:
同样利用移动时间戳的方法,可以求出有功功率的offset。其中,IMIN需要额外设置一个准确值,之前的准确值则为JTEST,LINECYC就是通过OSTimeGet()函数得到的两次累计时间。
在得到电流有效值、电压有效值、有功功率的LSB和offset之后,基本完成了校准工作,最后通过ADE7758获得的数据经过LSB和offset的修正后,得到的实际测量数据如表1所示。ADE7758的用户手册给出的误差低于0.1%,在实际组装系统与测试过程中,不可避免会产生人为误差,比如互感器的固定螺钉松紧不同会改变输入电阻,造成电压额外消耗;互感器部分的几个较小阻值的1%精度电阻精度不足,造成分压比例的不同等。经过研究,如果需要进一步提高精度,可以从提高电阻精度和改善系统组件固定方法两方面进行改进。
应用 研究 监控系统 电能 新型 ADE7758 相关文章:
- 那些经典的过流保护电路应用举例(12-09)
- 便携应用的电源管理挑战(12-09)
- 技术解析:单片机应用系统的可靠性设计(12-09)
- 多路输出开关电源的设计以及实际应用原则(12-09)
- 变频电源分类及其应用领域详细介绍(12-08)
- 浅析工业领域对UPS电源的应用要求(12-08)
- 婵°倕鍊瑰玻鎸庮殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
闂佺ǹ绻堥崝宥夊蓟閻斿憡濯寸€广儱鎷嬮崝鍛槈閺冨倸孝闁汇劎濮甸敍鎰板箣濠婂懐鎳囨繛鎴炴尰濮樸劑鎮¢敍鍕珰闁糕槅鍘剧粈澶愭煙缂佹ê濮囩€规洖鐭傞幆宥夊棘閸喚宀涢悗瑙勬偠閸庢壆绱為弮鍫熷殑闁芥ê顦~鏃堟煥濞戞ǹ瀚板┑顕呬邯楠炲啴濡搁妷锕€娓愰梻渚囧亞閸犳劙宕瑰鑸碘拹濠㈣埖鐡曠粈瀣归崗鍧氱細妞ゎ偄鎳橀幆鍐礋椤愩倖顔忔俊顐ゅ閸ㄥ灚瀵奸幇顔剧煓閻庯綆浜為悷锟�...
- 婵炴垶鎼╅崢鐐殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
缂備緡鍣g粻鏍焵椤掑﹥瀚�30婵犮垼鍩栧畝绋课涢鍌欑剨闁告洦鍨奸弳銉╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺屻倝鏌ㄥ☉妯侯殭缂佹鎸鹃埀顒傤攰閸╂牕顔忕捄銊﹀珰闁规儳鎳愮粈澶愭煕閺傜儤娅呮い鎺斿枛瀹曘劌螣閻戞ê娓愰梻渚囧亞閸犳洟骞撻鍫濈濡鑳堕鍗炩槈閹垮啩绨婚柟顔奸叄瀵粙鎮℃惔锝嗩啅婵☆偆澧楅崹鍨閹邦喚鐭欓悗锝庝簽閻熷酣鏌i妸銉ヮ伂妞も晪绠戞晥闁跨噦鎷�...
- Agilent ADS 闂佽桨鐒﹂悷銉╊敆閻旂厧鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
婵炴垶鎸婚幐鎼侇敊瀹ュ绠抽柛顐秵閸わ箓鏌ㄥ☉妯垮闁告瑥绻樺Λ鍐閿濆骸鏁奸柣鐔哥懐閺嬪儊S闂佸憡鑹剧€氼噣锝為幒妤€绀夐柣鏃囶嚙閸樻挳鏌涘⿰鍐濞村吋鍔楃划娆戔偓锝庝簽鐎瑰鏌i姀鈺冨帨缂侀亶浜跺畷婵嬪煛閸屾矮鎲鹃梺鐑╁亾閸斿秴銆掗崼鏇熷剹妞ゆ挾濮甸悾閬嶆煛閸愩劎鍩f俊顐ユ硶閳ь剚鍐荤紓姘辨閻у挷S...
- HFSS闁诲孩鍐荤紓姘卞姬閸曨垰鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
闁荤姍鍐仾缂佽鐒︾粙澶愬箻閹颁礁鏅欓梺鐟版惈閻楁劙顢氶幎鑺ユ櫖閻忕偠妫勫鍧楁⒒閸稑鐏辨い鏂款樀楠炴帡宕峰▎绂⊿闂佹眹鍔岀€氼剚鎱ㄥ☉銏″殑闁芥ê顦扮€氭煡骞栫€涙ɑ鈷掗柡浣靛€濋弫宥囦沪閽樺鐩庨梺鍛婃煛閺呮粓宕戝澶婄闁靛ň鏅滃銊х磼椤栨繂鍚圭紒顔芥そ瀹曠兘寮跺▎鎯уΤ婵炴垶姊绘慨鐢垫暜婢舵劕绠垫い鈥抽敪SS...
- CST閻庣敻鍋婇崰妤冧焊濠靛棭鍟呴柕澶堝€楃粙濠囨倵楠炲灝鈧洟鎮$捄銊﹀妞ゆ挾鍠愬▓宀€绱掔€n亶鍎忔い銊︾矌閹叉鏁撻敓锟�
闂佸搫顦€涒晛危閹存緷铏光偓锝傛櫅閻︽粓鎮规担绛嬪殝缂佽鲸绻堝畷妤呭Ω閳哄倹銆冮柣鐘辩瀵泛顔忕欢缍璗闂佸憡鑹剧€氫即濡村澶婄闁绘棁顕ч崢鎾煕濠婂啳瀚板ù鍏煎姉缁瑧鈧綆浜炵€瑰鏌i姀鈺冨帨缂佽鲸绻堝畷婵嬪煛閸屾矮鎲鹃棅顐㈡祩閸嬪﹪鍩€椤掑倸鏋欓柛銈嗙矌閳ь剚鍐婚梽鍕暜婢舵劕绠垫い鈥愁敍T闁荤姳鐒﹀畷姗€顢橀崨濠冨劅闁哄啫鍊归弳锟�...
- 闁诲繐绻愮€氫即銆傞崼鏇炴槬闁惧繗顕栭弨銊╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺岋拷
婵炴垶鎸稿ú锝囩箔閳ь剙螖閸屾惮鎴﹀Χ婵傚摜宓侀柛鎰级閸曢箖鎮硅閸ゆ牜妲愬┑鍥ㄤ氦婵炲棗娴烽弰鍌炴偣閸パ冣挃闁宠鍚嬬粙澶嬫姜閹殿喚鈽夐梺闈╄礋閸斿矂鎯冮悩绛圭矗闁瑰鍋涜灇闂佸搫鐗滈崹鍫曘€傞锕€鏄ラ柣鏃€鐏氭禍锝夋倶閻愬瓨绀冮悗姘辨暬閹虫ê顫濋崜褏顦梺鐟扮仛閹搁绮崨鏉戦敜婵﹩鍓涢弶浠嬫煟閵娿儱顏х紒妤佹尰缁嬪顫濋鍌氭暏缂佺虎鍘搁崑锟�...
- 閻庣敻鍋婇崰妤冧焊濠靛牅鐒婇柛鏇ㄥ灱閺嗐儲绻涢弶鎴剶闁革絾妞介獮娆忣吋閸曨厾鈻曢梺绯曟櫇椤㈠﹪顢欓崟顓熷珰闁告挆鈧弻銈夋煕濮橆剛澧︽繛澶涙嫹
闁荤姵鍔﹂崢娲箯闁秴瑙﹂柛顐犲劜閼茬娀鏌¢崶銊︾稇闁汇倕瀚伴獮鍡涙偑閸涱垳顦紓鍌氬暞閸ㄧ敻宕规惔銊ノュ〒姘e亾妞わ絽澧庨幏顐﹀矗濡搫纾块梺闈涙閼冲爼濡靛顑芥灃闁靛繒濮甸悵銈夋煏閸℃洘顦峰ǎ鍥э躬瀹曪綁鏌ㄧ€n剛鍩嶉梺鎸庣☉閺堫剟宕瑰⿰鍛暫濞达絽婀辨竟澶愭煛瀹ュ妫戠紒銊ユ健閺屽懘鏁撻敓锟�...