电力电子电抗器拓扑结构与阻抗变换分析
摘要:可变电抗器是电力系统中调压调功控制、谐波治理和无功补偿的关键设备。电力电子电抗器是一种新型的可变电抗器,它采用电磁技术、电力电子技术、控制技术、计算机技术等实现阻抗值的连续可调。这里介绍了电力电子电抗器的拓扑结构,分析了其阻抗变换原理,对其阻抗变换进行了仿真,并将其应用在电机软起动中,给出了实验结果。仿真及实验结果表明,基于电力电子电抗器阻抗可连续变化的特性,可将其应用在电机软起动、无功补偿、谐波抑制等方面,具有良好的应用前景。
关键词:电抗器;阻抗变换;软起动
1 引言
电抗器按其特性可分为固定电抗器和可变电抗器。随着电力系统的发展,在很多场合都希望电抗器的电抗值能够实时调节。
可变电抗器经历了从机械式到电磁式,再到电力电子式的发展过程。机械式可调电抗器结构简单,线性度好,但不能实现电感的平滑调节,目前应用较少。电磁式可变电抗器通过改变铁心的磁阻来改变电感。磁阻大,则电感小;反之,磁阻小,则电感大。电磁式可变电抗器制造工艺简单,成本较低,在限制过电压、补偿无功功率等方面应用潜力大。其主要缺点是响应时间长,振动和噪声较大。电力电子电抗器是近年来研究和开发出来的一种新型可变电抗器,它采用电磁技术、电力电子技术、控制技术、计算机技术等,可实现阻抗值的连续无级可调。典型代表有晶闸管式电抗器、IGBT式电抗器。
这里主要研究晶闸管式电力电子电抗器,它结合了传统机械式电抗器和电磁式电抗器的优点,对传统电抗器进行改进,可实现电抗值的连续无级可调,且高次谐波较小。
2 电力电子电抗器结构
传统的机械式电抗器结构如图1所示。采用调节分接头式的方式来改变电抗器的电感,仅能实现阻抗的有级变换。这里所述的电力电子电抗器将传统电抗器与电力电子技术相结合,其结构如图2所示。
对比图1,2知,电力电子电抗器将传统电抗器的单边绕组结构设计成双边绕组结构,其初级绕组与负载、电网串接、次级绕组与电力电子阻抗变换器相接,通过阻抗变换控制器控制电力电子阻抗变换器的工作状态,调节电抗变换器次级绕组的电流与阻抗,改变电抗变换器初级绕组的电流和阻抗,实现电抗器的阻抗变换。
3 电力电子电抗器拓扑结构
电力电子电抗器是一种较典型的可变电抗器。三组两两反并联的晶闸管构成电力电子阻抗变换器,通过控制晶闸管的导通角就可控制电抗器的等效阻抗值。其拓扑结构如图3所示。其一相的等效电路模型如图4所示。
文献已经详细推导了电力电子电抗器的阻抗变换原理。晶闸管控制角α与电力电子电抗器次级绕组ax端等效阻抗之间的关系为:
当α=0°时,晶闸管全导通,电力电子电抗器次级绕组相当于短路,电流最大,初级绕组电流最大,此时电力电子电抗器初级绕组阻抗最小。
当α=180°时,晶闸管关断,电力电子电抗器二次绕组相当于开路,电流最小,初级绕组电流最小,此时电力电子电抗器初级绕组阻抗最大。
当α在0°~180°之间时,电力电子电抗器初级绕组阻抗介于最大值与最小值之间,且连续可调。
4 建模与阻抗变换分析
在Matlab/Simulink中,利用电气模块PSB对三相电力电子电抗器进行建模与阻抗变换分析。三相电力电子电抗器仿真模型包括:三相电源模块、三相可变电抗器模块、三相晶闸管阻抗变换模块、脉冲触发器模块、负载模块等。
设置电源参数:电压峰值为,频率为50 Hz;电力电子电抗变换器功率:Pn=107VA,fn=50Hz;初级线圈参数:U1=104V,R1=2 mΩ,L1=0.05H;次级线圈参数:U2=25×105V,R2=2 mΩ,L2=0.05 H;磁阻Rm=200 Ω;励磁电感Lm=200 H。晶闸管参数使用默认值。设置Series RLC Branch的参数:R=100 Ω,L=0.05 H;C为inf,此时负载为感性负载。改变α得到仿真数据,根据此数据可描点绘出感性负载时α与电力电子电抗器的阻抗模值Z的关系图,如图5所示。
由图5可见,随着α的增大,电力电子电抗器初级绕组电压增大,电流减小,初级绕组阻抗增大,即电力电子电抗器阻抗随α的增大而增大。这与第3节中理论分析完全一致。
5 电力电子电抗器的应用及实验
5.1 电力电子电抗器式软起动器构建
软起动器结构图如图6所示。电机起动时,首先合上K1,电力电子电抗器初级绕组与电机、电网串接。根据阻抗变换原理,阻抗变换控制器通过改变电力电子阻抗变换器中晶闸管的触发角,来改变电力电子电抗器初级绕组的阻抗。随着该阻抗从大到小减小,加在电机上的电压由小逐渐增大,电机转速逐渐上升,当接近额定转速时,合上K2,断开K1,软起动结束,电机以额定转速运行。
阻抗 变换 分析 结构 拓扑 电子 电抗器 电力 相关文章:
- 详细解析基于PowerPCB的阻抗计算功能(12-09)
- 工程师经验:如何精确采集复阻抗的测试数据?(12-05)
- 在EMI滤波器设计中的干扰特性和阻抗特性讲解(01-12)
- 基于EMI滤波器设计中的干扰特性和阻抗特性的研究(01-12)
- 利用阻抗跟踪测量技术延长电池运行时间(01-11)
- 电路入门小常识:电路常识性概念——输入、输出阻抗(12-28)