微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 数字式光伏电池阵列模拟器的研制

数字式光伏电池阵列模拟器的研制

时间:04-12 来源:互联网 点击:

1 引言

太阳能作为一种新型的可再生资源受到越来越广泛的重视,但在光伏系统的研发过程中,太阳能电池阵列由于实验受到日照强度、环境温度的影响,导致实验成本过高,研发周期变长。光伏电池阵列模拟器可以大大缩短光伏系统的研究周期,提高研究效率及研究结果的可信性。

本文设计的光伏电池阵列模拟器以半桥电路为基础,基于DSP控制,并加入了PI控制改善系统动态性能和稳态精度。

2 太阳能电池的工作特性

太阳能电池在有光照条件下,光生电流会流过负载,从而产生负载电压。这时太阳能电池的等效电路如图1所示。其中,RS为串联电阻,Rsh为旁漏电阻,也称跨接电阻,它是由体内的缺陷或硅片边缘不清洁引起的。显然,旁路电流Ish和二极管的正向电流ID (通过PN结总扩散电流)都要靠IL提供,剩余的光电流经过RS,流出太阳能电池而进入负载。


根据文献资料[1],利用厂家提供的短路电流Isc,开路电压VOC,最大功率点处的电流Im和最大功率点处的电压Vm这四个参数可以得到太阳能电池板便于工程计算的模型:

这样,就把太阳能电池板的I-V特性曲线转换为简单的、便于工程计算的形式。

3 光伏电池阵列模拟器设计

模拟器的目的是要能模拟一定光照下,随负载变化的太阳能电池板的电特性,包括最大输出功率,输出I-V特性,以及不同日照下的变化。其应该完成以下三个方面的要求:

(1) 系统能够按照光伏阵列的输出特性完成输出,当外电路负载一定时,系统能够在工作点上保持稳定的输出;

(2) 当外接负载发生变化时,模拟器能够以合乎要求的速度变化到新工作点并能稳定在该点;

(3) 能够输出要求的功率;

本文设计的光伏阵列模拟器的系统结构框图如图2所示,整个系统主要由功率电路和采集控制电路两部分构成。功率电路采用半桥拓扑,用以完成直流变换,经整流滤波后,产生合适的输出电压。检测电路实时采集输出电压、电流,并送给DSP控制电路。DSP依据采集到的值,产生合适的占空比信号控制半桥两个IGBT开关。隔离驱动电路用于驱动IGBT开关,并实现与控制电路的隔离。如果想要模拟一条新的太阳能电池板I-V曲线,只需在软件中重新设定该曲线的和,这四个参数就可以了。

由于半桥母线电压为100V,单个管子承受耐压应该在100V以上,系统最大输出电流为3.5A。综合以上因素后,我们选择Infinion公司生产的IGBT单管IKW40N120T2,其耐压1200V,可通过的均值电流40A,且该单管价格便宜,开通、关断时间极短,开通压降只有1.7V,因此,开关损耗较小,是较理想的选择。

在本系统中,一共需要四路采集,分别是半桥高低端电压采集,输出电压电流采集。这四路信号都要设定过压或过流保护。采集电流信号使用电流传感器,采集电压信号使用电阻分压的形式。本设计的采集电路使用差分信号传输,并基于三级采集电路设计:首先使用全差分放大器LTC1992进行单端到差分信号的转换;然后使用模拟线性光耦HCPL7840进行信号隔离;最后使用仪用运放INA121将信号进行适当放大。

4 控制算法实现

4.1 寻找负载工作点的算法设计

光伏模拟器主要是跟踪负载的工作点,使得模拟器在不同负载情况下的输出能满足光伏阵列的输出特性。静态工作点的确定是模拟器的关键,如何在一特定负载下快速寻找到期望工作点,并使电源工作在这个点上。当负载变化,或是环境条件变化时,又如何找到新的工作点,并快速且精确的控制电源运行在这个工作点上,是模拟器控制算法所要解决的核心问题。

当负载电阻确定后,想要确定工作点处的电压电流,需要代入式(1)进行计算,但公式复杂,且涉及指数运算,在程序实现上十分麻烦,而且也会影响系统响应的速度。从我们研究太阳能电池的输出I-V特性曲线可以看到,在短路电流点附近,电池板接近恒流,输出I-V曲线在这一段接近一条直线;在开路电压点附近,电池板接近恒压,输出I-V曲线在这一段也接近一条直线。所以我们用四条直线来对电池板输出I-V曲线进行拟合,如图3所示。

只要我们采集输出电压电流,得到负载电阻,其伏安特性曲线是一条通过原点的直线,这一直线与上面某一条直线必然交于一点,这一点就是我们系统的理想工作点。然后再根据这一点的电压和半桥公式就能得到系统需要发出的占空比。

4.2 PI控制算法在模拟器中的应用

为了提高系统速度和减少静态误差,在控制系统中应用了PI控制算法,本设计的控制结构见图4。根据上文的控制策略,从测得的输出电压电流,可以得到输出负载RL,进而得到参考电压Vref,它与实际输出电压相减送入PI控制器中,PI输出控制调节占空比,进而使实际输出电压与Vref一致。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top