基于MAX4080检流放大器的的失调电压设计
引言
检流放大器是广泛用于电子设备实时监测负载电流的成熟IC。系统控制器根据负载信息进行电源管理运算,以更改负载电流本身的特性,并可提供灵活的过流保护方案。
检流放大器在放大微弱的差分电压的同时能够抑制输入共模电压,该功能类似于传统的差分放大器,但两者有一个关键区别:对于检流放大器而言,所允许的输入共模电压范围可以超出电源电压(VCC)。例如,当MAX4080检流放大器工作在VCC = 5V时,能够承受76V的输入共模电压。采用独立的放大器架构,电流检测放大器不会受电阻不匹配造成的共模抑制(CMRR)的影响。MAX4080具有100dB (最小值)的直流CMRR,而基于传统运放的差分放大器则受CMRR限制,其有效输入VOS通过信号链路是被放大。
通过校准提高精度
MAX4080检流放大器具有精密的输入失调电压(VOS),25°C时最大值为±0.6mV,在整个-40°C至+125°C温度范围内,最大值为±1.2mV。但是,许多应用需要更高的电流测量精度,因此需要对输入VOS做进一步校准。这种校准通过在生产过程中测量VOS并将结果存储在固件中实现。利用所存储的数据,当设备在现场投入实际使用时,可以在数字域调整VOS。
为便于生产,校准的首选方案是:在负载电流为零(零输入差分电压)时测量VOS。可以测量输出VOS并在以后的测量数据中减去该电压。不幸的是这种方法存在一个缺点,由于VOL (最低输出电压)和输入VOS相互影响,输出电压可能无法精确地反映输入VOS。所有单电源供电放大器均存在这一问题。
以增益为20的MAX4080T为例,并假设输入VOS为零,此时放大器输出的测量值应该为零。而实际情况是:即使在零输入差分电压下,放大器也不能保证输出电压低于15mV (10μA吸电流)。如果直接把测量到输出电压用于VOS校准,放大器的输入VOS为0.75mV (15mV/20 = 0.75mV)。
同样,如果MAX4080T具有VOL = 0,则正电压输入VOS应该产生正的输出VOS。而负电压输入VOS则不会“反映到”输出端,因为放大器不能产生低于地电位的输出电压。这样,在零输入差分电压下,不能通过“直接”测量输出电压来校准输入VOS。
生产过程中,有两种方法校准VOS
双向检流放大器具有内部基准,例如:MAX4081具有1.5V基准,能够将输出测量电压偏置在1.5V,这样,输入差分电压为零时,输出为1.5V ±VOS,引入误差。1.5V电压高于放大器的VOL,不会影响误差分析。可通过测量输出电压与1.5V理论电压之差计算得到VOS误差。但是,这种方法有一个缺点:降低了动态范围。对于0至5V输入动态范围的ADC器件,动态范围降低了30%,输出范围为1.5V至5V。另外,这种方法需要使用价格较高的双向检流放大器,用于单向测量。最后,利用一个低漂移1.5V基准或额外的一个通道的目的只是为了测量该1.5V基准电压,设计人员很难接受这种方案。
两点测量法对检流放大器施加两个已知的差分输入电压(负载电流)。首先,基于测量电压,利用直线逼近法在图表上外推出零检流电压对应的输入VOS。然后,利用电压测量值进行校准。这种方法的缺点是:需要提供两个“已知”的精密电流值,生产中很难得到这样的电流,同时还增加了测试时间。最后,需要注意的是:对于接近零的差分输入电压,很难得到精确的测量值,因为在极小的检测电压下,VOL限制会产生误差。
利用输入电阻调整输入VOS
本应用笔记介绍了第三种检流放大器输入VOS的测量方法。同样以MAX4080为例,作用一个零输入差分电压,能够抵消VOL与VOS间的相互影响—可以方便地用于生产线测试。
所有的检流放大器都具有输入偏置电流,必须慎重使用输入电阻(例如,作为输入滤波器的一部分),因为电阻会引入不确定的增益和失调误差。应用笔记3888:“带有输入串联电阻的电流检测放大器的性能”讨论了上述问题。本文采用类似技术,但特意选择不匹配的输入电阻,以引入额外的输出VOS。MAX4080的偏置电流可进行温度补偿,整个工作范围内偏置电流为5μA (典型值)和12μA (最大值)。在RS-串联一个2kΩ电阻(图2),以产生典型值和最大值分别为10mV和24mV的输入VOS。所引入的VOS产生相应的输出失调范围为200mV (典型值)和480mV (最大值),足以克服MAX4080 VOL和VOS的限制。输入电阻引入的误差VOS与温度有关,取决于输入电阻的温漂特性(通常为100ppm)和偏置电流(忽略不计)。
在100°C温度变化范围内,+100ppm电阻温漂特性将产生+1%的阻值变化(即+20Ω)。这样,输入电阻产生的附加输入VOS漂移典型值约为+0.1mV,最大值为+0.24mV (整个偏置电流变化范围内)。而这一温漂值在没有进行校准的情况下仅
- 开关电源的高性能电压型PWM比较器(03-13)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)