微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 3V与5V混合系统中逻辑器接口问题解决办法

3V与5V混合系统中逻辑器接口问题解决办法

时间:04-29 来源:互联网 点击:

极管压降)时,P沟道MOS场效应管T1的内部二极管会形成一条从输出端到Vcc的电流通路。所以这种电路在与5V器件相接时需要加保护电路。

  

  图3简化的CMOS输出级

  图4是一种带保护电路的CMOS器件输出电路。当输出端电压高于Vcc时,比较器使S1开路,S2闭合,使电流通路消失,这样在三态方式时就能与5V器件相接。

  

  图4带保护电路的CMOS输出端

  3.3 biCMOS输出电路

  LVT和ALVT器件的biCMOS输出电路如图5所示。它用双极NPN晶体管和CMOS场效应管来获得输出电压摆幅达到电源电压的要求。电流不会通过NPN双极晶体管T1回流到Vcc,但在P沟道MOS场效应管中的内在二极管仍然会形成一条从输出端到Vcc的电流通路(为了简化,图5中没有画出该二极管)。因此这种电路不能接高于Vcc的电压。

  

  图5 biCMOS输出电路

  对图5电路所加的保护电路,如图6所示。增加了反向偏置的肖特基二极管D1,用以防止电流从输出端流到Vcc。为了简化,图中没有画出双极晶体管。图6中的输出端与5V驱动器共用一条总线。在三态方式时,电路可以得到保护。当出现总线争夺即两个驱动器部以高电平驱动总线时,比较器将P沟道MOS场效应管T1断开。当3V器件处于等待方式而3V电源为0时,比较器和肖特基二极管D1可以起保护作用。

  

  图6用比较器和反向偏置的肖特基二极管保护3V器件的输出端

  4 3V、5V混合系统中不同电平器件接口的4种情况

  为了保证在混合电压系统中数据交换的可靠性,必须满足输入转换电平的要求,但又不能超过输入电压的限度。图7就是各种转换电平的例子:

  TTL电平输入高电平VIH 2V以上

  输入低电平VIL 0.8V以下。

  CMOS电平VIH为0.7×Vcc以上

  VIL为0.3×Vcc以下。

  

  图7 TTL及CMOS器件的转换电平

  例如Vcc为5V±0.5V的系统,CMOS的输入电压VIH至少是3.85V,而VIL必须小于1.35V。在3V/5V混合系统的计中,必须讨论以下4种信号电平的配置

  5V TTL输出驱动3V TTL输入;

  3V输出驱动5V TTL输入;

  5V CMOS输出驱动3V TTL输入;

  3V输出驱动5V CMOS输入。

  (1)通常,5V TTL器件可以驱动3V TTL输入,因为典型双极晶体管的输出并不能达到电源电压幅度。当一个5V器件的输出为高电平时,内部压降限制了输出电压。典型情况是Vcc-2VBE,即约3.6V。这样工作通常不会引起5V电源的电流流向3V电源。但是,因为驱动器结构会有所不同,因此必须控制驱动器的输出不宜超过3.6V以防万一。

  (2)用3V器件驱动5V TTL的输入端应当是没有困难的。不管是CMOS或biCMOS器件,3V器件实际上能输出3V摆幅的电压。对5V TTL输入的高电平2V门限是容易满足的。

  (3)当用5V CMOS器件来驱动3V TTL输入时,必须小心选择。要选用的3V接收器件应具有5V的容限。

  (4)前面曾谈到3V输出可以驱动5V TTL器件输入,但要注意对5V CMOS器件的输入来说情况却大不一样。应该记住3V输出是不能可靠地驱动5V CMOS输入的。在最坏的情况下,当Vcc=5.5V时所要求的VIH至少是3.85V,而3V器件是不能达到的。

  5 两种电平移位器件

  上面讨论了不同电平器件接口的4种情况,那么对于第4种情况该怎么办?这里介绍两种电平移位器件可以解决类似问题。

  (1)双电源电平移位器74LVC4245

  74LVC4245是一种双电源的电平移位器,如图8所示。5V端用5V电源作为Vcc,而3V端则用3V作为Vcc。它的功能类似于常用的收发器74LVC245,所不同的是用两个电源而不是一个电源。

  74LVC4245的电平移位在其内部进行。双电源能保证两边端口的输出摆幅部能达到满电源幅值,并且有很好的噪声抑制性能。因此该器件用来驱动5V CMOS器件的输入是很理想的。它的缺点是增加了功耗。

  

  图8 74LVC4245电平移位器

  较为简单的一种电平移位器件是74LVC07。它使用一个漏极开路缓冲器去驱动5V CMOS器件的输入,如图9所示。它的输出端由一个上拉电阻R接到5V电源。

  

  图9 74LVC07电平移位器

  6 结论

  5V器件能和3V甚至更低电压的器件共存于一个系统中。这种情况已经存在并将存在相当长的时间。在设计这种系统时要分析其中逻辑器件的接口问题。其关键是理解和运用以上讨论的基本概念以保证所设计的电路在不同电压器件间数据传输的可靠性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top