IGBT串联用的有源电压控制技术
BT关断过程中过冲电压的有效箝位,使其不超过预先设定的箝位电压值,保证器件不会由于过压造成损坏。有源电压控制法还可以实现对电压变化率dVCE/dt的控制,这样可以根据系统的要求来设定相应的电压变化率参数,防止电压变化率过大对系统造成危害。
但是从波形和分析中我们也可以看到,由于有源电压控制法可以控制dVCE/dt,在需要较慢的dVCE/dt时,会增加开关损耗。对于此,我们可以通过优化参考波形来减小损耗。同时,由于有源电压控制法不需要缓冲电路来实现动态均压,又减小了一部分损耗。
另外,在相同工作条件下,工作在较高频率时,通过低耐压IGBT串联实现高电压所产生的开关损耗,要比使用单只高耐压IGBT所产生的开关损耗小,具体比较见表1。
进行比较的3种英飞凌IGBT分别为1700V/1200A的器件FZ1200R17KF6C,3300V/1200A的器件FZ1200R33KF2C以及6500V/600A的器件FZ600R65KF2 (英飞凌6500V的IGBT没有1200A的,因此只能采用两个600A IGBT并联实现1200A电流等级)。
表1中进行比较的3种方案分别是:4个1700V器件串联,2个3300V器件串联和2个6500V器件并联。数据完全来自于3个IGBT相应的手册。串、并联后的测试条件包括:
⑴ 电流IC=1200A;
⑵ 电压VCE=3600V;(每个1700V器件承受900V,每个3300V器件承受1800V,每个6500V器件承受3600V);
⑶ 栅极电压VGE=±15V;
⑷ 温度TVJ=1250C;
⑸ 占空比50%。
表1中的数据计算公式见[附录]。
从表1中可以看出,随着IGBT的耐压的升高,开关损耗和导通损耗等相应增大。其中导通损耗增大的幅度相对不大,而开关损耗增大的幅度则相当大。1700V/1200A IGBT一个开关周期消耗的能量仅为0.81J,3300V/1200A IGBT一个开关周期消耗的能量增加为3.7J,而6500V/600A IGBT一个开关周期消耗的能量达到了9.4J。如果用两个6500V/600A IGBT并联,实现1200A的电流等级,则一个开关周期消耗的能量达到了18.8J。如此大的差距,在高频情况下,将产生极大的损耗差别。
通过串并联实现相同的电压、电流等级后,在开关频率为500Hz时,3种方式的损耗相近,其中3300V/1200A IGBT的损耗最小。随着频率的升高,高耐压IGBT的开关损耗越来越高。当工作频率为10kHz时,采用6500V IGBT方案的总损耗已达到191.18kW,而采用4个1.7kV IGBT串联的总损耗仅为39.84kW,相差4.8倍,而采用3300V IGBT的方案总损耗居中。
即使考虑到增加冗余量,通过使用5个1700V IGBT来实现一个6500V IGBT的应用,损耗仍然小很多,但是增加的冗余量,使得在有一个IGBT损坏的情况下,将其短路后,系统仍然能够正常工作。
而考虑到使用有源电压控制技术,基于控制dVCE/dt的考虑,而相比传统开关方式多甚至50%的损耗,采用多个低耐压IGBT串联的损耗仍然比使用高耐压IGBT要低很多。
除了损耗和冗余度的优势外,在价格方面采用串联低耐压IGBT的方案,也往往具有优势。并且低耐压IGBT由于需求量大,渠道畅通,供货周期也相对较短。
5 结论
通过以上实验结果和分析,表明了有源电压控制技术是实现IGBT可靠串联的一种良好的方案。另一方面,在较高工作频率下,采用低耐压器件串联比采用单只高耐压器件具有多种好处,包括低损耗、低成本、高冗余度等。考虑到在目前的技术条件下,单个IGBT器件的耐压值再继续提高难度很大,所以能够实现IGBT器件可靠串联的有缘电压控制技术具有广泛的应用空间。
[附录]
Ps即Pswitching,是单个IGBT的开关损耗:Pswitching=( Eon+ Eoff)*f
Pc即Pconduction,是单个IGBT的导通损耗:
Pconduction=VCE,on*Ic*D
其中D为占空比,设定为50%,则平均的Pconduction应为:
Pconduction=VCE,on*Ic*0.5
Pts即Ptotal,single,是单个IGBT的总功率损耗:Ptotal=Pswitching+ Pconduction
Pt即Ptotal,是串、并联后每个方案中IGBT的
总功率损耗:
Ptotal=Ptotal,single*N
其中N是串、并联个数。
参考文献
1. Letor, R. Series connection of MOSFET, Bipolar and IGBT devices. SGS-Thomson Designers Guide to Power Products 1992.
2. K. Okamura, Y.W., K. Yokokura and I. Ohshima, High repetition rated semiconductor switch for excimer laser, in Proc. 19th IEEE Power Modulator Symp. . 1990: San Diego, CA. p. 407-410.
3. Beom-Seok, S., L. Toeck-Kie, and H. Dong-Seok. Synchronization on the points of turn-off time of series-connected power semiconductor devices using Miller effect. in Industrial Electronics, Control, Instrumentation, and Au
- 控制系统中常见的几种地线详解(10-13)
- 嵌入式碟式太阳能热发电控制器研制与应用(06-28)
- 基于金升阳电源的智能窗帘控制器的设计(03-20)
- 控制电源开关技术是影响电源稳定的一大因素(12-09)
- 基于ATmega16 的电液伺服阀反馈控制器设计方案(12-09)
- 基于单片机的电梯控制系统的应用设计(12-09)