微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 光伏逆变器中功率电子器件的选择技巧

光伏逆变器中功率电子器件的选择技巧

时间:05-28 来源:互联网 点击:

数,从而简化了并联使用。

  TrenchStop 工艺是先进的沟槽栅(trench gate)和场终止层(fieldstop)概念的结合,可以进一步降低导通损耗。 Trench gate工艺提供更高的沟道宽度,从而减小了沟道电阻。ndoped 场终止层只执行一项任务:以极低的断态电压值抑制电场。这为设计出电场在n衬底层中几乎是水平分布的创造了条件。这说明,材料的电阻非常低,因而在导通过程中,电压降很低。电场终止层的优势,可通过进一步降低芯片的厚度得以发挥,从而实现上述所有优越性。采用TrenchStop工艺也可实现并联。

  表2给出了阻断电压为600V和1200V的IGBT的比较。对于这三种工艺来说,所使用的晶体管的额定功率都保持恒定。这就是说,电压为600V时器件的电流,是电压为1200V时器件的两倍。也就是说,一个50A/600V的器件相当于两个25A/1200V的器件。

  

  从上表可以看出,与1200V的器件相比较,600V TrenchStop工艺可以将开关和导通损耗降低50%。因此, 对于整个系统来说,尽可能地使用600V工艺的优异性能是很重要的。1200V TrenchStop工艺专为实现低导通损耗而进一步优化。因此,Fast工艺或 TrenchStop产品家族哪个更具有优异性能, 取决于开关频率。

  IGBT通常还需要一个续流二极管,以使其能够续流,这是EmCon工艺的一个特殊优化版本。它是根据600V系列器件的15kHz开关频率进行优化的。过去认为,续流二极管必须具备非常低的导通电压以实现最低总损耗。根据应用要求可进行其它优化,以使二极管和IGBT中的总损耗更低。这说明,在频率约为16kHz的IGBT和二极管的应用中,为实现低开关损耗,更高的正向电压降更为合适。

  这一点在图6(600V系列)中得以说明。左柱表示TrenchStop IGBT和EmCon3工艺中EmCon 二极管的损耗。右柱表示TrenchStop IGBT和为实现低传导损耗而进行优化后的二极管(称为Emcon2工艺)的损耗。右柱中的同一二极管与采用英飞凌的Fast工艺(600V)的IGBT结合使用。条形图中黄色和橙色的部分分别代表IGBT的导通损耗和开关损耗。深蓝色和浅蓝色部分分别是二极管的导通损耗和开关损耗。

  

  很容易看出,在开关频率为16kHz,负荷角的余弦值为 0.7和额定电流的情况下,Emcon3二极管在导通过程中会产生更高损耗(深蓝色),但能得到更好的开关性能。因此,就这一点而言,二极管本身已经是很好的选择了。 此外,它还降低了IGBT在开通过程中的开关损耗。上述第2部分的考虑事项同样适用于此处。 使用优化的EmCon二极管可使损耗降低1W左右,这是它的一个优势。请注意,当负荷角接近1的时候,开关损耗将成为主要的损耗,因为二极管只在输出逆变器死区期间导通。

  结论

  功率半导体器件需要具备 不同的特性,才能在太阳能逆变器应用中达到最高效率。新工艺的出现,如碳化硅半导体二极管或TrenchStop IGBT等, 正在帮助人们实现这一目标。当然,要实现这一目标,不仅要对单个器件进行优化, 而且还要对这些器件组合在一起发生作用的方式进行优化。 这将实现最小损耗和最高效率,而这正是太阳能逆变器最重要的两项指标。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top