微波EDA网,见证研发工程师的成长! 2025婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳娼¢弻鐔告綇閸撗呮殸缂備胶濯崹鍫曞蓟閵娾晜鍋嗛柛灞剧☉椤忥拷04闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹帛閸旀洟骞栭銈囦笉妞ゆ牜鍋為悡銉╂煟閺囩偛鈧湱鈧熬鎷�04闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛绮eΔ浣虹闁瑰瓨鐟ラ悘鈺冪磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈠Χ閸屾矮澹曞┑顔结缚閸樠冣枍瀹ュ洠鍋撶憴鍕;闁告濞婇悰顕€宕堕澶嬫櫌婵犵數濮撮幊澶愬磻閹捐閿ゆ俊銈勮兌閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴欏灪閸嬨倝鏌曟繛褍鍟悘濠囨⒑閹稿海绠撴い锔诲灣缁顢涢悙瀵稿弳闂佺粯娲栭崐鍦偓姘炬嫹
首页 > 硬件设计 > 电源设计 > 微功耗清洁能源存贮系统

微功耗清洁能源存贮系统

时间:06-21 来源:互联网 点击:

量比能量大为提高zR40wh/kg{,同时电池的充电接受率也提高,因此有利于快速充电。

⑷ 因为铅网抗拉强度大,能耐充放电循环中极板活物质的形状变化,因此循环寿命次数也相对提高。

⑸ Horizon使用专有的材料与制造设备,可快速的连续性生产Horizon高功率环保铅酸电池,从包铅、织网至组装成品约仅需4h,最后化成充电时间约3d。而传统电池的制造时间必需耗费7d,最后化成最长需15d时间。

⑹ 本产品过去经过多个独立单位测试,其整个电池的生产技术及表现应无问题。唯公司导入自动化量产设备,设厂后仍然需要时间调整以提高效率。

⑺ 产品环保。采用玻璃纤维复合材料板栅极大地降低了电池极板的重量,比普通铅酸蓄电池轻约30%。

⑻ 生产环保。水平电池采用的复合玻璃铅丝挤压成型和编织工艺,过程中没有铅蒸汽产生;采用完全的内化成,避免了外化成酸雾的产生;整条生产线在封闭环境内,生产线空气经过严格高效的净化处理,极板干燥所产生以及冲洗设备产生的废水都经中和、沉淀、过滤净化后循环使用,对环境没有污染。

⑼ 千网水平电池的制程本身完全可回收,以目前工厂的报废品也都可以回收。

⑽ 1颗高功率环保铅酸电池可抵4颗 Group 31 传统电池,可减少卡车重量负荷 200 P以上,重量减轻可减少燃油耗损、提高启动能力的可靠性并增加负载能力。

⑾ 电池具备质量轻、高电流容量、深度放电及快速充电特性。

7 直流逆变器

直流逆变器采用简单的电容网络,实现了直流电压的逆变。其最大特点是,电路简单,所有器件工作在工频,不产生EMI干扰,因此,功耗极小而寿命极长,安全可靠,节能环保,成本低,制作安装容易。

7.1 直流逆变器工作原理

图11是微功耗直流逆变器工作原理示意图,工作过程如下。

⑴ 正弦波前10ms面积沿Y轴N等分,此处以4等分为例。

⑵ 每个等分以下底为一边作4个长方形,堆累成塔形如图示。

⑶ 利用电容网络由输入直流电压产生塔形波,这是实施直流逆变的第一步。

⑷ 用正弦波从内部切割此塔形,正弦波的幅值选择原则,是使得正弦波在内部刚好和塔形波的直角边相切。

⑸ 塔形波被切去多余部份后的实体正弦波,刚好是输出的正弦波电压Va。

⑹ 塔形波切下来的多余部份打散、揉合,变换成正弦波电压Vb,与前述Va同时输出,产生输出电压Vo的前10ms波形。

⑺ 正弦波后10ms处理方法同上,产生输出电压Vo的后10ms波形。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...

图11 直流逆变器工作原理示意图

7.2 四阶塔形波产生电路

塔形波产生电路,实际上是一个电容升压网络,图12是4阶塔形波产生电路,为了简化说明,以电源V3、V5、V7、V9、V11、V13、V15、V17代表网络电容上的电压。图12中,MOS管Q4、Q6、Q8、Q10等组成4阶电容网络的正臂,MOS管Q2、Q5、Q7、Q9等组成4阶电容网络的负臂,其中Q6、Q5、V7、V9、D3、D4组成了电容网络的一阶,从下到上阶数递增。有关电容升压网络,参考文献[4]、[5]。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...

图12 塔形波(4阶)产生电路

前10ms,电容网络的正臂启动,各阶MOS管栅极驱动信号导通时间随阶数增加按每次2ms递减,各阶MOS管栅极驱动信号延时时间按每次1ms递增,第一阶MOS管Q10的驱动信号V16的导通时间为10ms,延时时间为0ms,依此类推。Q1、Q3栅极所加驱动信号是周期20ms的等幅方波电压,前10ms期间,Q1饱和导通。在V16高电平期间(脉宽10ms,延时0ms),Q10饱和导通,V15上的电压通过Q10的漏源极、D2、Q1的漏源极,在负载电阻R1上产生持续时间10ms、幅值为V15的方形电压S1;在V12高电平期间(脉宽8ms,延时1ms),Q8饱和导通,V11上的电压通过Q8的漏源极、D6、Q1的漏源极,在负载电阻R1上产生持续时间8ms、幅值为V11的方形电压S2,S2左右对称地堆在S1之上;在V8高电平期间(脉宽6ms,延时2ms),Q6饱和导通,V7上的电压通过Q6的漏源极、D3、Q1的漏源极,在负载电阻R1上产生持续时间6ms、幅值为V7的方形电压S3,S3左右对称地堆在S2之上;在V4高电平期间(脉宽4ms,延时3ms),Q4饱和导通,V3上的电压通过Q4的漏源极、D1、Q1的漏源极,在负载电阻R1上产生持续时间4ms、幅值为V3的方形电压S4,S4左右对称地堆在S3之上;在前10ms到来的最后时刻,在负载电阻R1上形成S1在下、S4在上、持续时间递减的宝塔波电压。

后10ms期间,电容网络的负臂启动,同样道理,在负载电阻R1上形成S1在上、S4在下、持续时间递减的负方向宝塔波电压。20ms到来的最后时刻,在电阻R1上形成了一个完整的宝塔波电压,图12右边是所产生的宝塔波电压的仿真波形。

7.3 宝塔波驱动信号产生电路

图13是16阶微功耗微分逆变器驱动信号的实际电路,电路由4片16个LM339比较器组成,参考电压V2是直流电压,

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top