高性能汽车电源设计的发展趋势
OEM厂商针对ECU单元制定了最大电磁辐射限制。 为保持电磁辐射(EMI)在受控范围内,DC-DC转换器的类型、拓扑结构、外围元件选择、电路板布局及屏蔽都非常重要。经过多年的积累,电源IC设计者研究出了各种限制EMI的技术。外部时钟同步、高于AM调制频段的工作频率、内置MOSFET、软开关技术、扩频技术等都是近年推出的EMI抑制方案。 应用与功率需求 大多数系统电源的基本架构选择应从电源要求以及汽车厂商定义的电池电压瞬变波形入手。对于电流的要求应该反映到电路板的散热设计。表1归纳了大多数设计的电路及电压要求。 表1.通用电源及电压要求¹ 通用电源的拓扑架构 图3.电源结构选项:Reg1:8V(CD/DVD驱动器);Reg2:5V(µC);Reg3:3.3V(µC);Reg4:2.5V/1.8V(DSP);Reg5:1.2V(存储器)。 与数字CMOS工艺类似,模拟BiCMOS也在不断地缩小设计的几何尺寸,以求获得最佳的投资回报,降低工艺开发的风险。但是,工艺优化的方向并不符合汽车应用的需求。例如:大多数集成工艺针对降低5.5V至6V输入电压范围的器件成本进行优化,但尚未对9V至10V输入器件的制造工艺进行成本优化。这也正是设计中需要产生中等电源,进而产生低压的原因。 以下列出了四种常用的电源架构,总结了最近三年汽车领域的典型设计架构。当然,用户可以通过不同方式实现具体的设计要求,多数方案可归纳为这四种结构中的一种。 方案1 该架构为优化DC-DC转换器的效率、布局、PCB散热及噪声指标提供了极大的灵活性。方案1的主要优势是: 增加核设计的灵活性。设计提供不同的电压选项,以满足特定的设计要求。即使不是最低成本/最高效率的解决方案,增加一个独立的转换器有助于重复利用原有设计。 有助于合理利用开关电源/线性稳压器。例如,如果系统中提供为处理器供电的3.3V电源,相对于直接从汽车电池降压到1.8V,从3.3V电压产生1.8V300mA的电源效率更高、成本也更低。如果新设计中需要更改电源电压,旧的电源模块不再满足要求时,设计人员可以很容易地选择一个替代模块,不会造成任何浪费。 合理分配PCB散热,这为选择转换器的位置及散热提供了灵活性。 允许使用高性能、高性价比的低电压模拟IC,与高压IC相比,这种方案提供了更宽的选择范围。 另外需要注意的是:方案1占用较大的电路板面积、成本相对较高,对于有多路电源需求的设计来说过于复杂。 方案2 该方案是高集成度与设计灵活性的折衷,与方案1相比,在成本、外形尺寸和复杂度方面具有一定的优势。 该方案特别适合两路降压输出并需要独立控制的应用。例如,3.3V不间断供电电源,而在需要时可以关闭5V电源,以节省IQ电流。另一种应用是产生中等电源,例如5V,为低压转换器供电,利用这种方案可以省去一个产生8V的boost转换器。 采用外置FET的双输出控制器可以提供与方案1相同的PCB布板灵活性,便于散热。内置FET的转换器,设计人员应注意不要在PCB的同一位置耗散过多的热量。 方案3 这一架构把多路高压转换问题转化成一路高压转换和一个高度集成的低压转换IC,相对于多输出高压转换IC,高集成度低压转换IC成本较低,且容易从市场上得到。 这种方案有助于简化电源设计,可以方便地从不同供应商获得替代器件。另外,高度集成的低压IC要比多路高压IC的成本低。 如果方案3中的低压PMIC有两路以上输出,那么方案3将存在与方案4相同的缺陷。 方案3的主要劣势是多路电压集中在同一芯片,布板时需要慎重考虑PCB散热问题。 方案4 最新推出的高集成度PMIC可以在单芯片上集成所有必要的电源转换和管理功能,突破了电源设计中的诸多限制。但是,高集成度也存在一定的负面影响。 在高集成度PMIC中,集成度与驱动能力总是相互矛盾。例如,在产品升级时,原设计中内置MOSFET的稳压器可能无法满足新设计中的负载驱动要求。 把低压转换器级联到高压转换器有助于降低成本,但这种方式受限于稳压器的开/关控制。例如,如果5V电源关闭时必须开启3.3V电源,就无法将3.3V输入连接到5V电源输出;否则将不能关闭5V电源,造成较高的静态电流IQ。 EMI和负载点转换器可能会制约核心PMIC的使用,电路板布局以及较长的引线可能无法使用PMIC能够提供的电源电压。 Maxim的汽车电源解决方案 Maxim的汽车电源IC克服了许多电源管理问题,能够提供独特的高性能解决方案。电源产品包括过压保护和欠压保护、微处理器监控、开关转换器和线性稳压器等高度集成的多功能PMIC,完全满足汽车信息娱乐系统的供电需求。 Maxim通过了TS16949(汽车质量标准)认证,针对汽车产品配备了专门的支持队伍,提供质量认证、客户服务
- PMU 从发展中获益(09-18)
- ATX电源版本及发展历程解析(03-05)
- 开关电源的技术与发展趋势解析(10-23)
- 通信网绿色化发展趋势浅析(09-23)
- 锂空气电池的挑战与发展(09-19)
- 开关电源的技术追求和发展趋势(09-08)