微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 一种高压共轨喷油器的驱动电路设计

一种高压共轨喷油器的驱动电路设计

时间:06-29 来源:互联网 点击:

6缸或4缸控制中,主控制信号(即高压预喷射和正常喷射信号)每3或2个一组,回线控制信号号和回线控制信号同时有效时,该缸被选中,电磁阀才能打开。回线控制信号在每个缸的喷射过程中一直有效,因此喷射时间的大小主要由主控信号的脉冲宽度决定。在电磁阀打开的过程中,回线控制环路中采样电阻上流过一定值的电流,当该电流超过一定值时,达到内部比较器的阈值,内部的比较器发生翻转,最终产生脉冲宽度可变的PWM波形,控制电磁阀的高速开启和关闭,让电磁阀保持较小且恒定的电流,降低电路的功耗,同时保护器件不被损坏。

电磁阀的理想运动特性是实现在电磁阀通电初期尽快地注入能量,以提高电磁阀的响应速度;在电磁阀通电动作后,只需要提供较小的保持电流。这样不但可以降低能量消耗、减少电磁阀的发热量,而且可以提高电磁阀的断电响应速度。通过控制脉冲来控制功率管的通断,实现“峰值~维持”波形的电流调节方式,控制波形见图5所示,CYD_IJ为CPU提供的初始喷油信号,经过CPLD处理后产生高压喷射BOOST_IJ和正常喷射POW_IJ主控制信号。IJ_VOL为高压预喷射和主喷射信号的线或,即为电磁阀上端的电压,在两个信号同时为高时该信号为高压信号50V,快速开启后为正常电源电压24V。IJ_CUR为电磁阀在喷射过程中的电流,在初始高压喷射过程中该电流迅速上升至峰值电流I_PULL,在高压喷射结束后该电流随着PWM脉冲的变化呈现充电放电的过程,保持在I_HOLD附件,使电磁阀的电流位置在比较低的范围内。

3 试验验证
将设计的硬件电路在喷油台架上进行测试,所选用的喷油器型号为BOSCH公司的CRIN1。所需的喷嘴驱动电流图形见图6所示,峰值电流为17.5~19.5A,保持电流为12.5~13.5A。通过实验测得喷油器电流波形如图。所以,通过示波器测量,喷油器峰值电流为19.5A,保持电流为13.5A。电路波形整齐有序,台架验证,该驱动方式工作稳定可靠、效率较高,完全满足喷油器驱动需求。

4 结论
在对BOOST升压电路与PWM调制驱动电路进行分析的基础上,给出了喷油器半桥驱动器的实现方法和对应的控制电流波形。试验结果表明,采取相应方法之后电磁阀电流一致性较好,喷油器动态响应较快,性能优异,系统运行可靠,能满足产品实际使用要求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top