通信系统的供电架构分析
现代电信系统需要更宽的带宽、更快的数据率、更严密的保密措施、更新性能、更多的用户和用户特性的广泛性,这促使为现代电信系统提供dc电压和电流的电源设计,正在从传统形式转变到新的技术形态,基于dc-dc变换器的新一代电源系统必须工作在宽输入电压范围,有时达到30~100V。同时,电源系统为高性能通信系统的ASIC、DSP和用深亚微米CMO工艺设计的微处理器提供若干低电平dc电压。
在通信和网络服务器应 用中,这意味着不仅仅变换48V输入电压为传统的5V和3.3V,而且变换为新的更低的电压(范围从低于1V到2.5V,负载电流10~35A)。另外, 电源系统必须保持严格的容限并产生最小的噪声来保持信号的完整性。这些增加的要求发生空间受限制和热管理是主要考虑的环境中。
为了满足这些要求,电源系统架构正在从早期的集中提供较低电压和电流变换到目前的分布方法。代替单电源产生所有必须的电压电平,现在电源沿着第2和第3总线分布到dc-dc变换器,降压到适合各个电路或子系统的电压电平。
在每个电平,设计人员可以设计或购买dc-dc变换器,这种变换器为若干IC、ASIC、温合信号器件或完整的印刷电路板提供必须的电压和电流。每 种dc-dc变换器具有特殊的拓扑,拓扑取决于它供电的电路和所工作系统的很多因素,如效率、噪声电平、物理因数(高度、重量、大小),所需的输出电压数 量、功耗和散热。本文将讨论专门的折衷考虑和满足不同系统电源设计目标的最好拓扑结构。
分布电源
在分布电源架构(图1)中,前端电源变换ac电源为dc并通过第一级总线分配 dc电压(电信系统中通常为-48V)到dc-dc中间总线变换器(IBC)。IBC的目的首先是提供隔离以及降低ac-dc前端分布的电压到较低的电压 电平。这应该发生在通过第2级分布总线送它到最后非隔离dc-dc(降压)变换器前。负载点(POL)变换器为系统提供所需的电压和电流。
图2示出dc-dc隔离电流模块和POL负载点变换器如何配置成典型的分布电源系统,提供多输出电压和电流。来自前端ac-dc电源的DC电压(- 36~-72V)馈入一个隔离的电源模块,此模块代表一个总线变换器。模块完全是隔离ac-dc变换器,有不同的形式(全砖、半砖、1/4砖),具有标准 的占位面积,引脚输出和散热能力。POL变换器可以是开关稳压器(降压或升压稳压器)和线性稳压器的组合或仅是线性稳压器,这取决于所供电的电路要求。灵敏电路需要低噪声线性稳压器,而高效率开关稳压器是必须有最小功耗的电源系统的选择。
-48V电信分布电源系统
图3示出电信应用的-48V分布电源系统框图,该图说明了电源从输入ac线到低电压dc-dc POL变换器的过程,电池(48V) 为电源失效时备份ac-dc变换器。-48V热交换控制器(IC)在带电插拨电路板时,为电源连接提供智能控制,这包括侵入电流控制,短路保护和保护电源 系统的其他保护功能。第一个dc-dc变换级是一个隔离变换器,这意味着输入dc电源地与输出ac电源地是隔离的,通常采用变换器隔离,隔离是限定的,防 止在失效条件下所呈现危险电压电平危害人。然而,隔离电路使变换器比较贵并对效率有影响。为系统单元电路提供电源的POL变换器不需要隔离,因为它们由为 其提供dc输入电源的隔离电源模块保护。
混合电源系统
可以用集中和分布单元的组合设计电源系统,如图4所示的混合电源系统。集中电源产生5.0V和3.3V逻辑电源(其输入为ac线)以及分布到电压稳 压器模块(VRM)的12V dc电平。用VRM为高性能处理器提供很大电流、低电压芯核和I/O电压。VRM电源变换器放置在母板靠近处理器的 “负载点”处,这可减少电路板迹线电压降,在不同的情况下,迹线电压降对于有效的变换器工作是不能接受的。
基本的DC-DC变换拓扑
所有的dc-dc变换器可分为线性稳压器和开关稳压器两种。线性稳压器的优点是简单、较低的输出纹波电压和噪声,简单的线性和负载调整。开关稳压器 具有较高的效率,可高达95%(线性稳压器效率大约为50%或更低),并且有较大的功率密度(功率与体积比,量度为W/in3)。开关变换器与线性变换器 相比对于宽输入—输出电平比更有效,因为开关变换器利用输出滤波部件。图5示出线性和开关稳压器的框图。
非隔离降压拓扑
降压变换器是构成大多数开关变换器架构基础的基本拓扑。它是最通用的拓扑,在分布电源系统中会用到这种拓扑,因为必须变换高dc电压(48V)到较低的电压,而且功耗小。开关是一个功率晶体管(通常是MOSFET),其栅极由执行脉宽调制(PWM)的IC驱动它控制占空比(晶体管的开关时间),从而控制输出电压大小。图6示出非隔离降压拓扑。
降压变换器特性为:
·无隔
- 具扩展频谱频率调制的低EMI DC/DC稳压器电路(12-24)
- EMI/EMC设计讲座(三)传导式EMI的测量技术(07-20)
- 扩展射频频谱分析仪可用范围的高阻抗FET探头(07-14)
- 开关电源基于补偿原理的无源共模干扰抑制技术(08-27)
- 开关电源的无源共模干扰抑制技术(11-12)
- 省电设计使DDS更适合便携应用(12-19)