微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 汽车电子系统降压型BUCK 变换器的设计技巧

汽车电子系统降压型BUCK 变换器的设计技巧

时间:07-07 来源:互联网 点击:

I或H级,对于I级,芯片的结温必须小于125°C,对于H级,芯片的结温必须小于150°C。对于许多单芯片的BUCK控制器,在低的环境温度下,结温一般不是问题。但对于I级,环境温度高于85°C时,必须小心仔细的进行电路的设计以保证芯片能够充分的散热。对于H级,环境温度高于125°C时,必须对最大的允许工作电流进行降额设计。

  结温通过芯片的功率损耗乘以结到环境的热阻Rja进行计算。满载时芯片的温升几乎完全不依赖于输入电压,不加散热器时,热阻取决于PCB的设计。在单芯片底部通常有一个裸露的衬垫,因此设计PCB时必须在对应的位置也相应的制作这样的一个大铜皮焊盘,同时这个大焊盘通过一些过孔连接到其它的地层平面,以利于散热。

  4 输入短路和反接保护

  如果电感的饱和电流足够大,BUCK控制器短路时由于具有短路保护功能,因此不会产生损坏。在一些电池充电系统中以及用电池作备份的系统中,电池以及其它的一些电源通过二极管以“与”的形式一起共同连接到BUCK控制器的输出端时,当BUCK控制器输入端断开时,输出端仍有高的电压。注意到BUCK控制器通常有一个/SHDN管脚到控制系统的工作与关断,低电平有效,通常以作SS软起动功能。一般此管脚通过一个电阻或直接连接到输入端。当输入端浮空时,输出电压通过电感,内部高端的MOSFET反向并联寄生二极管到输入端,/SHDN管脚为高电平,这样,BUCK控制器内部的电路通过电感从输出电压吸取几个毫安的静态的工作电流,影响电池的使用时间。当然如果/SHDN管脚为低电平,则此静态的工作电流为0。如果输入短路,输出电压通过电感,内部高端的MOSFET反向并联寄生二极管到输入端,从而导致输出电压也短路,这样电池将会快速的放电。下图就是防止电池在输入短路状况下反向放电的保护电路,D4也防止输入的反接,只有在有输入电压里系统才工作。

图6:防止输入短路时输出备份电池反向放电电路

  结论

  1 合适的开关频率可以保证系统具有足够的输入工作电压范围,同时使电感和电容的尺寸和体积最小。

  2 实际最大的输入工作电压由MOSFET所要求的最短导通时间决定,实际最小的输入工作电压由MOSFET所要求的最短关断时间决定。

  3 必须抑制输入瞬态电压,检查散热设计,增加输入短路和反接保护电路才能保证系统的安全工作。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top