USB 充电解决方案:高效 AC 适配器
轻载效率和空载功耗。轻载或者空载功耗的主要原因是SR-MOSFET开关和SR控制器IC偏置。“绿色整流器”成功地解决了这些问题,方法是:(1)使用一个自动轻载检测电路,在其导电时间降至某个阈值以下时关闭SR MOSFET的门开关;(2)使用EN功能,让IC进入睡眠模式,消除静态功耗。轻载检测电路对每个开关周期的SR导电时间和设定最小“导通”时间(MOT)进行比较。当负载降低时,二次导电时间短于MOT,且下一个SR门脉冲失效。利用控制器IC的EN功能,可实现进一步降低空载功耗。我们可以使用一种MOSFET漏极电压的简易均衡电路,空载状态下让IC进入睡眠模式,从而将IC的偏置电流消耗限制在100 µA。利用这种方法,可以再降低10mW的空载功耗。提高空载性能的最后一步是添加一个低电流肖特基二极管,并与SR MOSFET并联在一起。 图 3 一次侧同步的典型 CCM 反向波形 例如,我们使用两个控制器芯片组(TI UCC28610和UCC24610),为平板电脑终端应用设计一种3A额定电流的USB充电器。访问本文末尾的网站地址,可以查看到这种充电器的参考设计(PMP4305)。UCC24610非常适合于那些使用5-V反向开关模式电源的应用,并且可以工作在4.75到5.25 V规定USB电压范围内。因此,这种SR控制器直接偏置于转换器输出,无需在主电源变压器上安装辅助绕组。这种控制器还允许使用两个消隐计时器的外部编程,防止导通和关断过渡期间检测到的VDS振铃引起SR伪触发。图4显示了满负载状态下PMP4305的典型功率级波形。IC控制方案不受导通时VDS信号的严重振铃所影响,因为可编程MOT计时器在此期间禁用了VTHOFF比较器。 图 4 PMP4305 满负载波形 图5显示了115V和230V AC线压状态下SR-MOSFET和肖特基二极管输出整流效率之间的对比情况。实现同步整流,可在满负载到约25%满负载范围内实现80%以上的效率。另外,在这一负载范围内,通过肖特基二极管整流可实现3到5个百分点的效率提高。 图 5 肖特基二极管与同步整流(SR)系统效率对比图 结论 消费类设备USB充电解决方案正受到越来越多人的关注。拥有多个USB接口的10W到25W充电器通用标准,可为多种设备供电,无需为每一种新的电子设备都配备一个新的墙上充电器。我们需要使用一些高效率的AC/DC转换器,才能满足高密度小型适配不断发展的需求。如UCC24610“绿色整流器”等器件,可以帮助提高AC/DC转换器效率,并实现高密度USB充电器设计。
- 基于CAN通信的电源监控系统的设计(04-06)
- 一种基于Intel8253与L298N电机PWM调速法(06-09)
- GPIB芯片TNT4882在多路程控电源中的应用(06-08)
- 用作测试负载的数字可编程电阻(07-15)
- 关于光电转换电源控制系统的设计(07-24)
- 基于DSP的单相精密电源硬件设计(07-24)