微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 高压、大电流控制器实现多种拓扑 mW 至 kW 电池充电

高压、大电流控制器实现多种拓扑 mW 至 kW 电池充电

时间:08-01 来源:互联网 点击:

FLT 和 CHRG 引脚提供充电状态指示信号。该电池充电器的其他特色包括:±0.25% 的可编程浮置电压、可选定时器或 C/X 电流终止、利用 NTC 热敏电阻器实现的温度合格的充电、自动再充电、面向深度放电电池的 C/10 涓流充电和坏电池检测。

LTC4000 采用扁平 (0.75mm) 28 引脚 4mm x 5mm QFN 封装和 28 引线 SSOP 封装。该器件在 -40°C 至 125°C 的温度范围内工作是有保证的。其关键特色如下:

·与一个 DC/DC 转换器配对使用时,可实现一个完整的高性能电池充电器

·宽输入和输出电压范围:3V 至 60V

·输入理想二极管实现低损耗反向隔离和负载共享

·输出理想二极管实现低损耗电源通路和与电池的负载共享

·电源通路控制

·在电池深度放电时即时接通工作

·可编程输入和充电电流:准确度为 ±1%

·准确的可编程浮置电压 (室温时为 ±0.2%,随温度变化为 ±1%)

·可编程 C/X 或基于定时器的充电终止

·NTC 输入以实现在合格的温度条件下充电

对外部 DC/DC 转换器的全面控制

LTC4000 需要一个外部补偿的开关稳压器以构成一个完整的电池管理解决方案。系统性能将基于 LTC4000 与之配对的开关稳压器类型的不同而变化。

LTC4000 包括 4 个不同的调节环路:输入电流、充电电流、电池浮置电压和输出电压 (A4DA7),请看下面的方框图。无论哪一个环路都需要 ITH 引脚上的电压最低,以稳定控制外部 DC/DC 转换器。输入电流调节环路确保在稳定状态时不超过所设定的输入电流限制 (利用 IL 引脚上的电阻器)。充电电流调节环路确保,不超过所设定的电池充电电流限制 (利用 CL 引脚上的电阻器)。

浮置电压调节环路可确保编程电池组电压 (采用一个通过 BFB 从 BAT 连接至 FBG 的电阻器来设置)不被超过。输出电压调节环路则用于确保编程系统输出电压 (采用一个通过 OFB 从 CSP 连接至 FBG 的电阻分压器来设置) 不被超过。另外,LTC4000 还提供了输入电流和充电电流监视引脚 (分别为 IIMON 和 IBMON 引脚)。

2LTC4000 方框图

灵活的演示电路

凌力尔特的演示电路 DC1721A-A 是一个 14.6V、5A 电池充电器和电源通路管理器,采用了输入范围为 6V 至 36V 的降压-升压型转换器,该转换器采用 LTC4000 / LTC3789,针对 4 节 LiFePO4 电池应用。参见图 3 的系统方框图。

3:采用 LTC4000/LTC3789 演示电路板系统的方框图


这个演示电路板的输出专门为 Tenergy 的 10Ahr 电池而定制。其他电压可以通过改变外部电阻器来设定。利用微调电阻器可以准确地微调所希望的标称电压。设计该电路的目的是要说明在一个具智能电源通路 (PowerPath) 管理器的降压-升压型转换器电池充电器中使用这些器件能获得高性能水平、效率与小巧解决方案尺寸。

该电路以 400kHz 工作,在 6V 至 36V 的输入电压范围内,产生稳定的 5A/14.6V 电池充电器输出以及高达 6.25A 的系统输出,适用于种类繁多的便携式应用 (包括仪表、工业设备、电动工具和电脑)。该电路的总体占板面积为 12.4cm2 (如果仅用 LTC4000 电路,则为 3.6cm2),从而能实现非常紧凑的解决方案 (参见图 4)。同步整流有助于在满负载和标称输入时获得超过 96% 的效率 (参见图 5).

4DC1721A 演示电路板照片 (实际尺寸为 5.5 英寸× 2.85 英寸)

5DC1721A VINVOUT_SYS的效率

为了增加电路评估和仿真功能,不久将推出演示电路 DC1830,从而允许 LTC4000 电路板与采用其他兼容 DC/DC 转换器的独立评估电路板连接。

结论

LTC4000 是一款高压、大电流电池充电控制器和电源通路管理器,与任何外部补偿 (ITH/VC 引脚) 的 DC-DC 转换器相结合,可构成强大的电池充电和电源管理解决方案。该器件几乎与采用任何拓扑的开关都兼容,包括 (但不限于) 降压型、升压型、降压-升压型、SEPIC 和反激式拓扑。LTC4000 的全功能控制器可为各种化学组成的电池充电,包括锂离子 / 聚合物 / 磷酸盐、密封铅酸和基于镍的电池。LTC4000 采用紧凑、扁平 (0.75mm) 的 28 引脚 4mm x 5mm QFN 封装,或者有引线的 28 引线 SSOP 封装。这极大地简化了一度非常困难的设计任务。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top