基于ADE7878的多路电量检测系统设计
1 ADE7878简介
ADE7878是一款高精度、三相电能测量IC。ADE7878适合测量各种三线、四线的二三相配置有功、无功和视在功率,例如Y形或三角形等。各相均具有系统校准功能,即有效值失调校正、相位校准和增益校准。CF1、CF2和CF3逻辑输出可提供许多功率信息:总/基波有功/无功功率、总视在功率或电流有效值和。
ADE7878具有波形采样寄存器,允许访问所有ADC输出。该器件还提供电能质量测量,例如:短时低压或高压检测、短时高电流变化、线路电压周期测量以及相位电压与电流之间的角度等。利用两个串行接口SPI和I2C,可以与ADE7878通信,同时专用高速接口、高速数据采集(HSDC)端口可以与I2C配合使用,以访问ADC输出和实时功率信息。该器件还有两个中断请求引脚/IRQ0和/IRQ1,用来指示一个使能的中断事件已经发生。
2 电量检测系统设计
2.1 系统设计原理
整个检测系统由LPC2132控制及数据存储模块、信号调理和采集模块、多路信号切换模块和通讯模块组成。我们采用LPC2132控制芯片实现电量检测系统的各项功能。交流电压和电流信号,经过信号调理电路,经过4052多路信号切换电路,输出ADE7878采样范围内的信号,ADE7 878将模拟量信号转换为数字量,LPC2132芯片通过I2C通信接口,获取ADE7878的数据,同时LPC2132适时切换4052多路开关,切换各个支路电流信号输出到ADE7878芯片。检测系统配有EEPROM掉电存储单元,可以将ADE7878的校表参数及电能数据存储。通讯模块通过RS485通信接口,可以与计算机进行数据通信,上传采集到的数据信息。电量检测系统实现原理如图1所示。
2.2 系统硬件设计
硬件系统设计主要分信号调理和采集模块、多路信号切换模块、MCU控制及数据存储模块和通信模块3部分。
2.2.1 信号调理和采集模块
电压采样采用电阻分压的方式实现,用大电阻及小电阻串联,采样小电阻两端电压信号,这样输出端VA(VB,VC)输出一个范围在0~500 mV之间的模拟电压。该模拟电压信号输入到ADE7878中。信号调理和采集电路原理图,如图2所示。
电压采样电路计算公式及电压系数如式(1)、(2)所示。
电流采样的传感器采用电流互感器,一次侧直接为实际测量线路,其二次侧输出为电流信号(具体输出电流大小根据需要而定),故电流采样采用串联电阻的方式实现,采用两个电阻串联实现,这样可得到一个范围在0~500 mV之间的交流电压信号。该模拟电压信号输入到ADE 7878中电流采样电路计算及电流系数计算公式如式(3)、(4)所示。
在进行多路电量信号采集时,需要通过适时切换4052接入ADE7878芯片的模拟信号。实际电路中由于选用电阻本身的误差和输入失调、温漂等问题的存在,上述计算公式零位和线性系数会稍有偏差,可以通过标定得到准确的系数和零位。
2.2.2 MCU控制系统的设计
为了提高采集系统的可靠性,选用基于32位ARM7内核的LPC2132芯片作为主处理器及外部的复位电路实现可靠复位。这样使用一个小的、廉价的处理器核就可实现很高的指令吞吐量和实时的中断响应。MCU控制系统电路原理图,如图3所示。
为了使系统能够正确复位,在此系统中,使用专用复位芯片CAT1025复位。CAT1025集成了系统电源监视电路。当系统电压高于设定电压时,延时200 ms启动系统,这使系统在上电时的复位时间大于LPC2132芯片所需要的复位时间,使系统正常复位。
2.2.3 多路信号切换模块的设计
本系统,采用一个电能芯片可采集4路的电流,功率或单路电流,功率,电能数据,其实现多路电流检测的关键是通过CD4052/CC4052切换各路电流信号接入ADE7878芯片。
CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B 2个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。这些开关电路在整个电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。其典型应用原理如图4所示。
- 基于ADE7878的多路电量检测系统设计(08-03)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)