微波EDA网,见证研发工程师的成长! 2025婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳娼¢弻鐔告綇閸撗呮殸缂備胶濯崹鍫曞蓟閵娾晜鍋嗛柛灞剧☉椤忥拷04闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹帛閸旀洟骞栭銈囦笉妞ゆ牜鍋為悡銉╂煟閺囩偛鈧湱鈧熬鎷�12闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛绮eΔ浣虹闁瑰瓨鐟ラ悘鈺冪磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈠Χ閸屾矮澹曞┑顔结缚閸樠冣枍瀹ュ洠鍋撶憴鍕;闁告濞婇悰顕€宕堕澶嬫櫌婵犵數濮撮幊澶愬磻閹捐閿ゆ俊銈勮兌閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟�
首页 > 硬件设计 > 电源设计 > 空间受限型应用中的PMBus热插拔电路介绍

空间受限型应用中的PMBus热插拔电路介绍

时间:08-16 来源:互联网 点击:

摘要

本文详细介绍了热插拔电路基础,以及要求使用系统保护与管理 (SPM) 和印刷电路板 (PCB) 基板面极其珍贵的情况下系统设计人员所面临的诸多挑战。以模块化实现利用集成数字热插拔控制器时,我们为您介绍了一种框架,用于检查设计的各项重要参数和热插拔系统保护电路的 PCB 布局。另外,文章还列出了相关实验结果报告。

高密度系统的热插拔电路保护

许多分布式电源系统(如图 1 所示)都集成了总线转换器、负载点 (POL) 与线性稳压器,专用于高性能刀片式服务器、ATCA 解决方案和通信基础设施系统[1]。这些系统越来越多地应用于一些日益小型化的实现中,旨在降低成本。为了保证这些系统拥有最大的可靠性和最长的持续运行时间,热插拔控制器[2]是首选方法,因为它可以提供最理想的系统保护和电管理,特别是能够达到服务器市场的严格要求。系统保护与管理 (SPM) 功能专用卡边缘的可用 PCB 基板面已变得相当狭小,这并不让人感到意外。这种情况带来的结果是,设计工作主要集中在了高功率密度、低成本热插拔电路实现上面。

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...
图 1 电信系统分布式电源架构例子

在这类应用中,热插拔控制器的特点是通常包括带电电路板插入(浪涌电流控制)和拔取安全控制、故障监控诊断与保护以及高精确度电气(电压、电流、功率)和环境(温度)参数测量,目的是提供实时的系统模拟或数字域遥测。特别是,如果服务器机架一个线卡出现故障,该故障应隔离在该特定线卡,不会影响系统底板或者其他通过带电底板供电的线卡。热插拔控制器正常情况下会通过接口连接至某个通过 MOSFET,其同电源通路串联,从而实现“开/关”功能和电流检测低电阻分流器。

图 2 显示了典型服务器系统中为供电量身定做的线卡接口和热插拔电路原理图,并为后续讨论的模板。讨论过程中,我们将不厌其烦地详细描述热插拔电路底板连接器边缘插件板和下游组件。

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...
图 2 典型的热插拔电路布局

一般而言,在一些 +12V 和 +48V 系统中,热插拔通过器件(图 2 中 MOSFET Q1)与高端连接配置,并且其栅极连接至接地基准控制器。在 -48V 底板系统中,该控制器参考至 48V 电压轨,并且根据要求上下浮动。在所有情况下,当检测到故障 Q1 被热插拔控制器迅速关闭时,必要时接地连接可不中断。

热插拔模块提供一种方便的标准化方法,实现一站式热插拔解决方案。这种模块是一种单独、独立的子配件,它们是一些结构相同、超紧凑、独立自主、经过完全验证和测试的组件,完全适合于高容量 SMT 制造。同样,它可在多个系统和应用之间灵活地部署使用,从而极大地减轻了系统工程师的设计工作负担。热插拔模块通常以一种中间夹层的方式平行堆叠在系统主板上,利用镀过孔 (PTH) 或者表面贴装 (SMT) 接头与电源和信号连接形成母子配置结构。另外,需要注意的是,主板通过模块的终端连接提供导电散热。然而,使用双面模块板布局时,主要功耗组件通过 MOSFET 和分流电阻器,放置于模块的顶部,以有目的地利用应用环境中的自然或者强制对流。

电路规范

表 1 列出了热插拔电路模块的相关规范。

规范

符号

输入电压范围

VIN

10.8V–13.2V

输出电流范围

VBR

0A–10A

电流限制

ICL

12.5A±8%

断路器电平

ICB

22.5A

故障超时

TFAULT

1 ms

最大环境温度

TA(MAX)

55°C

气流速度

Q

100 LFM (0.5 ms-1)

可用PCB面积(不包括PMBus连接器)

APCB

15 mm x 18 mm

数字遥测PMBusTM地址

Addr

0x16

表 1 热插拔电路设计规范

在这种高功率密度热插拔电路设计中,下列局限性尤为明显:

·成本:电气(MOSFET、控制器、分流电阻器)和机械(连接器、PCB)组件

·PCB 面积:严重受限

·组件规范:体积受限(尺寸和外形)

·热规范和散热属性:基本散热

电路原理图和组件选择

图 2 描述了建议热插拔电路的原理图。可以方便地将任何负载相关大容量存储电容器,靠近负载放置于主板上,无需放置在热插拔模块上。

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...
图 3 数字热插拔电路原理图

表 2 详细列出了最基本的电路组件的封装尺寸和厂商建议焊垫几何尺寸。

电路组件

厂商部件编号

体积尺寸(mm)

建议焊垫几何尺寸(mm)

通过MOSFET

TI CSD17309Q3

3.3 x 3.3 x 1.0

3.5 x 2.45

分流器

Vishay WSL12062L000FEA18

3.2 x 1.6 x 0.64

3.5 x 2.45

热插拔控制器

TI LM25066A

4.0 x 5.0 x 1.0

4.2 x 5.4

TVS

Vishay SMPC15A

6.5 x 4.6 x 1.1

6.8 x 4.8

表 2 热插拔电路组件封装尺寸和建议焊垫几何尺寸

基本组件位于顶部,内部各层主要构成并行接地层,用于散热和降低传导损耗。TVS 和各种可选组件位于底部。散热过孔位于 MOSFET 漏极板和

闁诲繐绻愮€氫即銆傞懜鐢碘枖闁规崘灏欓悷褰掓煕閳哄喚鏀版い鏂垮瀵偄鈻庨幋鏃€鐓犻梺瑙勪航閸斿繐鐣烽敓锟�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top