微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于OZ8940芯片电动汽车锂电池管理系统设计方案

基于OZ8940芯片电动汽车锂电池管理系统设计方案

时间:08-24 来源:互联网 点击:

充电回路。

  2.5.3 高、低温保护

  温度保护功能是暂时切断充电或者放电回路,当温度恢复正常后,则闭合充电或者放电回路。温度保护的工作原理同样是将内部温度传感器,或者是将由外部温度采集电路得到的温度信息,与OZ8940内部的高、低温门限值相比较,当超过门限值时则启动保护功能。在电池充放电状态或者闲置状态下,触发了高温保护功能,系统会同时切断充电回路和放电回路。

  低温保护功能的触发发生在放电状态或者闲置状态下,此时系统仅切断放电回路。同样,OZ8940在休眠模式下,高、低温保护失效。

  2.6 电池组信息的处理与显示

  如图5所示,OZ8940通过I2 C接口与STC单片机(MCU)进行通信,它们之间通过光耦隔离有效地将OZ8940的高压侧与STC单片机的低压侧进行了隔离。采集到的电压信息送至STC单片机进行处理,通过CAN[3]总线送至显示器显示。在汽车运行这样一个高温、震动及电磁辐射强度高的恶劣环境下,CAN总线因其良好的检错能力和高可靠性被广泛应用。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线。通过单片机P1.0端口和一个MOSFET管,可以使充电回路中的一个熔断器熔断,起到了切断充电回路的作用。即单片机收到OVPF端口产生的一个PF信号后,可由P1.0端口控制一个MOSFET管导通,使得回路熔断器断路,进而与OZ8940的第二级过电压保护功能相配合,起到了保护系统的作用。

  

  图5 系统通信与显示。

  3 软件设计

  STC单片机上电后配置各个寄存器,以及对OZ8940发送控制字命令,完成初始化。系统每隔500ms定时启动一次转换,读取电池组电压、电流、温度等信息,计算电池剩余容量,然后送至显示器进行显示。

  当这些信息超出用户设定的门限值时,启动报警。当系统启动第二级过电压保护功能时,OZ8940发送一个PF信号给STC单片机,单片机收到这个信号后产生一个中断,在中断服务程序里,通过P1.0口控制外部MOSFET管导通,熔断回路熔断器,并启动报警告知用户。OZ8940将采集到的单体电压值进行处理,与预先设定的门限值进行比较,当满足均衡条件时,均衡电路开始工作。系统软件流程图如图6所示。

  

  图6 电池管理系统软件流程。

  4 实验结果及结论

  实验时采用12节40 Ah的磷酸铁锂电池串联构成电池组。列举一组实验数据如下:

  设计的电动汽车锂电池管理系统实现了对电池组电压、电流、温度、剩余电量等信息的监测(见表1,表 2,表3),单体电压误差小于10 mV.过电压、过电流和温度保护的应用使得电动汽车在实际运行中更加安全可靠。I2C通信和CAN 总线通信简单可靠。均衡电路的应用有助于延长电池组的使用寿命。系统具有简 明可靠、抗干扰能力强等特点,实验证明系统的设计是可行的。

  表1 单体电池电压采集

  

  表2 电流及温度采集

  

  表3 锂电池管理系统参数设置

  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top