安森美针对充电电池的低成本CCR充电解决方案
对于手机、数码相机(DSC)、音乐播放器等便携设备中常见的单节锂离子电池等而言,充电一直是一个颇有挑战性的问题,因为既要满足特定应用要求,又要确保安全和无故障的充电操作。本文将讨论怎样将安森美半导体的恒流稳流器(CCR)用于可充电电池的低成本充电电路,为其提供了终止充电的简单控制器。
电池种类及充电技术选择
三种最常见的充电电池分别是镍金属氢化物(NiMH)、镍镉(NiCad)和锂离子(Li-ion)。电池充电速率用字母“C”表示。“C”定义了1.0小时的电池容量。例如,一个额定值为800 mAh(毫安时)的电池可以用0.5C充电,因而使电池完全充电需要以400 mA充电电流充电超过2个小时。图1是充电电路的基本框图。
1) 镍氢和镍镉电池
镍氢电池的额定电压为1.2 V/节,应该用高达1.5-1.6 V/节的电压充电。要决定何时中断充电有几种不同技术可以采用,其中包括:峰值电压检测、负Δ电压、Δ温度(dT/dt)、温度阈值和定时器。对于高端充电器这些技术都有可能组合用在一个充电器当中。
CCR充电器是一个峰值电压检测电路,可在预定峰值终止充电,为上述电池的充电提供了一个合适的解决方案。其预定峰值电压为1.5 V/节,可将电池充电至约97%的程度。镍镉电池可以使用该电路充电。其表现与镍氢电池非常相似,所以这种方法很合适。
2) 锂离子电池
对锂离子电池而言,常用的充电方法是在0.5C到1C条件下通过涓流充电将电池充电至4.2 V/节。在充电过程中,锂离子电池的温升应保持在低于5℃,较高的温升表明可能会引发自燃。涓充部分的充电周期电池温升最大,最有可能自燃。由于这个问题,高端充电可使用智能IC(如安森美半导体的NCP1835B)来监视和控制锂离子电池的充电过程。
恒流稳流器(CCR)充电电路设计
本文讨论的CCR控制器没有使用涓流充电,因此消除了可能自燃的问题,让电池处在一个安全工作区有助于提高电池的使用寿命。不过,不使用涓流充电,电池将只能充电到约85%的程度。
1) 设置参考电压
利用三端可编程分流稳压器TL431可以设置参考电压。它可在其参考引脚提供一个恒定的2.5 V输出。当如图2所示连接两个外部电阻时,参考电压可以选为2.5 V至36 V。出于我们的目的,我们将R2设置为1.0 kΩ,并将Rref调整到我们想要匹配的参考电压。用来得出R2/Rref比率的公式是:
连接到TL431阴极的电阻用来限制电流,并将参考电压与输入电压分开。
2) 迟滞环路比较器
LM311是一个单比较器,用来比较参考电压与电池电压。连接到反相输入端的是电池电压。迟滞是由输出和非反相输入端之间的反馈电阻(Rh)提供的。R3是一个1.0 kΩ的电阻,用来简化R3/Rh的比例。通过调整Rh可以改变迟滞环的带宽。增加Rh可以减少带宽,反之亦然。建议迟滞的带宽大于200 mV,因为在充电终止时,电池的电压会略微下降一些。高电压与低电压的反相输入公式是:
1.0 kΩ电阻(R4)连接到比较器的输出端作为一个上拉电阻。
3) 电流开关
电路中的两个双极结型晶体管(BJT)(Q3和Q6)作为控制充电电流的开关。Q6的基极是通过一个5.6 kΩ电阻(R6)由比较器的输出控制的。Q6的集电极通过一个1.0 kΩ电阻(R5)连接到Q3的基极。当比较器的输出变为低电平时,Q6被关闭,导致Q3关闭而终止充电电流。
4) 稳流
电池的充电电流采用一个CCR来控制。电流可以通过一个可调节CCR和/或并联CCR来调整。这个演示板是专门为两个并联CCR(Q4和Q5)设计的(可以并联连接两个以上的CCR,以便能够达到你想要的任何电流)。对于本文讨论的实验,CCR(NSI45090JDT4G)可以在90 mA至160 mA范围内调整。三个用于数据分析的电流分别是90、180和300 mA。
5) 指示器LED
为了表明电池正在充电,组合使用了一颗CCR、Q7及一个LED。CCR为LED提供个恒流。在没有电池连接到充电器时,LED也将“导通”。当LED“关闭”时,表明电池已完全充电。
6)设置不同的测试电流
表1显示了决定充电电流的可变元件值和充电终止电压。同时在180 mA测试两个NSI45090JDT4G CCR被用来给出一个Radj = 10的90 mA的电流输出。
7) 测试结果
CCR充电电路是通过在90 mA、180 mA和300 mA对锂离子电池和镍氢电池充电进行测试的。表2是正在充电的电池监测到的关键电压。表3显示了电路终止电池充电后相同的关键电压。在测试过程中,电池的温度开始迅速升高(见表4),测试结束之前,电池电压达到参考电压。
表4包含了电池的温度数据。在所有情况下,环境温度约为25℃。对于锂离子电池而
- 安森美半导体白家电各功能模块的高能效方案(12-09)
- 安森美用于电信及医疗电源等反激升压稳压器(12-08)
- 基于NCP1246的低待机能耗设计(04-13)
- 安森美半导体用于白家电各功能模块的高能效方案(02-17)
- 用于低功率应用的高能效AC-DC开关稳压器方案(01-02)
- 电源适配器中安森美半导体超低待机能耗方案(12-19)