便携式医疗电源系统设计的特性及注意事项
温度检测,ΔT/Δt为其首选方式。特制的快充式NiCd和NiMH电池可在C/2-C/3的速率下充电4-6小时。极低阻尼镍电池作为快充式电池的一种,可在1C速率下充电1小时。最后,锂离子电池建议采用恒流/恒压充电(CC/CV)。
通常,锂离子电池供电的器械以1C的速率充电60-75分钟至4.1V后,即可从原来的低能状态达到电量80-90%的状态。其它电池,除可采用高电流充电的特制电池外,同样充电至80-90%时可能需要更多的时间。锂离子电池还需慢充4-5小时至4.2V,获得剩余的10-20%的电量。这种充电方式有两个好处。用户可以在极短的时间内获得接近满充的电量,且充电完成后的实际电压绝不会超过4.2V。
须注意的是:如果仅将锂离子电池充至4.1V而非4.2V,可延长其循环寿命;但其每次可用的电量将会下降。在某些医疗器械中电池是一种后备装置,它始终保持充电的状态,以保证随时可用。锂离子的化学性质决定其不适合采用涓流充电;锂离子电池不能采用恒定浮充充电。但有几种方法可以在不损害电池或影响医疗器械的基础上,有效降低锂离子电池过度充电的可能性。方法之一是在触发电池再次充电前确保电池放电量至少为20%,随后进行标准充电。锂离子技术与SLA相比显著提高了能量密度,在大多数情况下足以防止锂离子电池电量完全充满。
6 安全电路
图3. 锂离子电池组设计中需要采用电子安全装置。电池组内还包含电量监测装置和充电电路。
每种电池技术均有其一整套安全考虑。NiCd电池组带有某种电流分断设备以防止发生严重故障,这是优秀的电池设计必不可少的。NiMH具有发热的化学性质,因此电池中需配有热量感应设备,与充电器相联系,防止过度充电,电池组本身还带有电流分断设备。在锂离子电池组中,一旦发生过电压,即有锂金属产生。这说明电池中应使用安全电路,使充放电过程中电池电压保持在特定的范围内(见图3)。
虽然SLA电池一般不需要外部安全元件,但许多医疗设备制造商仍坚持将不可复位保险丝置于电池内部或周围。由于大部分SLA电池都带有突出的正负极板,如果没有保险丝,当其置于金属板上时,就很容易发生短路,而金属板大量存在于医疗保健设备中。这些电池还可能出现其它短路的危险。如果发生短路,装置即有爆炸的可能。锂离子电池组短路的危险较小,安全电路主要用于保护电池。
在电池中加入安全电路增加了器械的成本,耗费了更多的空间。设计者必须认识到这些都是电池的选择过程中会考虑到的权衡因素。总的来说,尽管有安全电路的存在,锂离子电池仍可以缩小电池组体积,减轻其重量,并能释放更多的能量。
7 电量监测
来越多的医疗器械制造商开始采用锂离子技术,电池管理特性在行业中也越来越常见。电量监测设备可以为终端用户提供一些信息,如电池预计使用时间等。管理特性的引入,很大程度上明确了电池电量评估及充电方案的执行。
就电池管理而言,使用锂离子电池的设计者有多种选择方案。例如,一些锂离子电池电量监测设备中含有信息特征,可以报告已经过的充放电循环次数。此类信息在一些重要的医疗设备中具有重要作用。电量监测基本方法有两种:基于电压和库仑计数。将两种技术相结合的解决方案,其准确 性高达99%。
8 耐高温性
锂离子电池在40°-45°C的高温条件下,性能优于其它电池。SLA和NiMH电池在高热量环境下无法正常工作。这成为其在急救工具中使用的一个限制因素,因为此时,使用者无法将他们的便携式器械保存在低温环境下。
结论
本文结合医疗器械的要求及锂离子技术的特性,概述了便携式电源系统设计的注意事项。并比较了锂离子电池和其它化学电池的特性和容量。
在为便携式器械选择最佳电源方案时,必须对其总成本和整体性能进行评估。锂离子技术的高电压特性可以减少电池使用量,由此降低了电池组的成本,使之与使用镍技术的电池大致相当。此外,锂离子电池供应商不断使用新材料,以降低电池成本。
锂离子电池体积小、重量轻、能量高、循环寿命长、耐久性好、电压高及耐热性好的特点使其具有潜在的优势。医疗电子产品制造商可以利用这些特性,拓宽产品市场,并最终给消费者、医疗专业人员和病人带来治疗等方面的好处。
- 小功率便携式音频产品(含Charger 和DC-DC)的辐射发射超标对策(12-09)
- 便携式设备充电电路中的分立器件保护方案(12-09)
- 便携式智能化的流感诊断系统设计方案(12-08)
- 便携式设备充电电源电路设计(12-06)
- 电源管理的Linux技术实施应用在便携式动态设备(01-15)
- 关于个人便携式设备电源管理设备的发展趋势分析(12-29)