微波EDA网,见证研发工程师的成长! 2025婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳娼¢弻鐔告綇閸撗呮殸缂備胶濯崹鍫曞蓟閵娾晜鍋嗛柛灞剧☉椤忥拷04闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹帛閸旀洟骞栭銈囦笉妞ゆ牜鍋為悡銉╂煟閺囩偛鈧湱鈧熬鎷�24闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛绮eΔ浣虹闁瑰瓨鐟ラ悘鈺冪磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈠Χ閸屾矮澹曞┑顔结缚閸樠冣枍瀹ュ洠鍋撶憴鍕;闁告濞婇悰顕€宕堕澶嬫櫌婵犵數濮撮幊澶愬磻閹捐閿ゆ俊銈勮兌閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€哥粻鏍煕椤愶絾绀€缁炬儳鐏濋埞鎴︽偐鐎圭姴顥濈紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�
首页 > 硬件设计 > 电源设计 > 基于智能型的铅酸蓄电池管理系统研究

基于智能型的铅酸蓄电池管理系统研究

时间:10-28 来源:互联网 点击:

  引 言

  铅酸蓄电池行业与电力、交通、信息等产业发展息息相关,在汽车、叉车等运输工具和大型不间断供电电源系统中处于控制地位,是社会生产经营活动和人类生活中不可或缺的。我国蓄电池行业规模相当庞大,应用也非常广泛,鉴于铅酸蓄电池的使用不当带来的问题(如硫化、容量减小、使用寿命缩短等),实现蓄电池的智能化管理显得非常必要,而国内目前应用于该领域的嵌入式系统产品很少。本设计利用8位微控制器MB95F136来实现对铅酸蓄电池的智能管理,包括电池的充放电监测控制、电池容量检测及显示与报警等,从而有效地实现对铅酸蓄电池系统的智能化管理,提高了蓄电池的使用寿命,降低了维护成本。

  1 系统概述

  本设计充分利用MB95F136的特点实现对蓄电池电压、电流及温度的实时在线监测。智能控制系统的充放电过程,可以显示蓄电池的电量,对不正确的、或对电池寿命有较大损害的使用状况予以控制和报警提示,可以在电池需要充电时提醒用户及时充电或者切换备用电源,防止过充过放等。为实现对铅酸蓄电池的智能化管理,系统通过实时对蓄电池的动态参数进行自动修正来获得准确的计算依据,从而计算出准确的电量和蓄电池的状态信息,并取得蓄电池的充电参数。

  本文设计的蓄电池管理系统主要有以下几个功能:

  ①实时监测蓄电池的温度,通过温度及其他参数来计算蓄电池的充放电参数,避免因使用不当或蓄电池温度过高等因素缩短蓄电池的寿命。

  ②实时监测蓄电池的端电压和电流,若发现电池容量小于警戒阈值,即提醒充电或自动切换备用电池。

  ③能通过对参数的分析计算出蓄电池的剩余容量,并通过数码管实时显示出来。

  ④系统能够自动修正蓄电池的内部参数来适应因使用给蓄电池带来的一些变化,还能通过控制充放电电路获得更好的充电效果。

  本系统结构如图1所示。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...


  2 系统硬件设计

  2.1 系统控制核心

  本系统在设计上采用F2MC一8FX系列单片机MB95F136作为系统的控制核心。MB95F136在系统中不仅要实时监测蓄电池的电流、电压、温度等参数以及系统运行状态,还必须根据所采集到的数据进行处理,并对充电控制模块输出控制信号以实现对蓄电池系统的智能管理;同时,还负责实现按键控制和系统状态输出显示。Fujitsu公司的MB95F136采用的是O.35μm低漏电工艺技术,掩膜产品可以在1.8 V和1μA的低耗电工作模式(时钟模式)下运行,流水线总线架构可提供双倍执行速度,最小指令周期为62.5 ns。它在具备快速处理和低耗电特性的同时,配有丰富的定时器;集成1个8通道的8/10位可选A/D转换器,可以方便地应用于系统中对电压、电流的采集。双操作闪存也是F2MC一8FX系列8位微控制器的特点之一,当一个程序在一个存储区中运行时,可以在另一个存储区中完成重写,从而减少外部存储器零件的数量来缩小电路板的表面积。另外,LVD(低电压检测)以及CSV(时钟监视器)功能可以提高系统的稳定性和可靠性。

  2.2 电源电路设计

  本系统中,为了增强系统应用的灵活性,系统电源取自于被管理的蓄电池。为此,必须采用DC-DC模块进行隔离。由于选用的DC—DC模块要求输入电压≥24 V,因此系统管理的蓄电池必须是2节以上标称为12 V的电池组,否则就需要另外设计电源电路;为了增强系统的可靠性,系统可以设置一个3 V的电池盒用于备用电池,一旦取自蓄电池的电源出现故障,系统仍能照常运行。系统电源电路原理图如图2所示。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...


  2.3 电流电压采集电路

  监测的对象主要是电池组的电压和电流。电压由分压精密电阻取得,经过相应的放大后送至单片机的A/D口。蓄电池的充放电流经过O.01Ω采样电阻采样、放大,然后送至单片机的A/D端口POl。对蓄电池进行检测的关键在于对电压采样的精确程度,因而采样电路设计得是否适当对整个系统至关重要。由于MB95F136内嵌的A/D转换器可以工作于5 V基准电压下,故采用图3所示的电流电压采集电路。该电路的最大好处是,不但可以保证采样值能随蓄电池端电压的变化相应地实时变化,而且能够使数据更加准确、可靠。该电路为典型的线性电路,根据运算放大器的特性,可计算出经过采样电路后的输出电压为O.01 Q×I×23。

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...


  2.4 参数存储模块

  在系统投入工作前要进行参数(如产品序列、零点调整、蓄电池标准电压等)的设置,系统将这些参数写入EE—PROM中。为了减少读/写EEPROM的次数,在系统开机时将数据从EEPROM中读出,保存在单片机的RAM中。EEPROM的主要功能是参数数据的保存与定量备份,主要用来存储一些系统运行参数,如计算蓄电池电量的参考数据、修正系数等。

本系统采用的是具有2 Kb容量的EEPROMAT2

鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top