新颖的均流IC 可轻松平衡两个电源
由于 MOSFET 会耗散功率 (在图 3 中高达 IL • VFR(MAX)),因此应适当地选择其封装和散热器。减少 MOSFET 功率耗散的唯一办法是采用准确度更高的电源或者放弃均分范围。 RANGE 引脚 — RANGE 引脚负责设定应用的均分捕获范围,而这又取决于电源的准确度。比如:采用 ±3% 容差电源的 5V 系统将需要一个 2 • 5V • 3% (即 300mV) 的均分范围 (较高的电源为 5.15V,而较低的则为 4.85V)。RANGE 引脚具有一个 10μA 的精准内部上拉电流。在 RANGE 引脚上布设一个 30.1k 电阻器可将其电压设定为 301mV,此时控制器能够补偿 300mV 的电源压差 (见图 4)。 图 4:带状态指示灯的 5V 二极管“或”负载均分。当任意 MOSFET 关断时,红光 LED D1 将点亮,表示均分出现中断 把 RANGE 引脚置于开路状态 (如图 1 所示) 将提供 600mV 的最大可能均分范围。但是,当伺服电压接近二极管电压时,电流将会流过 MOSFET 的体二极管,从而引起均分损耗。把 RANGE 引脚连接至 VCC 可停用负载均分功能,以将器件变为一个双通道理想二极管控制器。 补偿 — 负载均分环路利用连接在 COMP 引脚和地之间的单个电容器进行补偿。该电容器必须为 MOSFET 输入 (栅极) 电容 CISS 的 50 倍。如果并未在使用快速栅极接通 (未接入 CPO 电容器),则该电容器可以仅为 10 x CISS。 检测电阻器 — 检测电阻器决定了负载均分准确度。准确度随着电阻器电压降的增加而有所改善。最大误差放大器失调为 2mV。因此,25mV 的检测电阻器压降将产生一个 4% 的均分误差。如果功率耗散指标的重要性高于准确度,则可减低检测电阻器的阻值。 结论 历史上,在电源之间平衡负载电流一直是个难题,这不禁让我们联想到走钢丝的惊险场景。当电源模块或砖型电源未提供内置支持时,有些设计人员将花费大量的时间设计良好受控的系统 (并在电源类型改变时重新进行设计);而其他的设计师则将勉强接受基于电阻的粗略型压降均分法。 LTC4370 采用了一种完全不同于任何其他控制器的电源负载均分方法。该器件可简化设计 (特别是对于那些不适于实施执行中微调的电源),而且其可移植到各种不同类型的电源。固有的二极管特性可防止电源遭受反向电流,并保护系统免遭故障电源的损坏。LTC4370 为一个精细复杂的问题提供了简单、精巧和紧凑的解决方案。
两个 电源 平衡 轻松 IC 新颖 linear 相关文章:
- 两个超混沌系统自动切换电路的设计和仿真(04-05)
- 由两个555时基电路构成的长延时电路设计(05-28)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)