微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 高压变频器的谐波研究与分析

高压变频器的谐波研究与分析

时间:11-03 来源:互联网 点击:

Matlab中的仿真波形及其频谱如图10、11所示。

图10 单元级联多重化输出电压及其频谱

图11 单元级联多重化输出电流及其频谱 来源:输配电设备网

4.4 高压变频器输出谐波与IEEE-519比较分析

三种逆变结构的各主要次谐波与基波含量比值如表6、7所示,所有数据均在无额外滤波装置的情况下,利用Matlab/Simulink仿真得到。结合IEEE-519中的标准,进行比较分析。变压器耦合输出型变频器基本能满足IEEE-519中的要求,尤其在低于23次的谐波含量完全小于IEEE-519中限定的数值,只是由于PWM载波比的影响在23、25次附近出现较大的谐波。三电平逆变也基本能满足IEEE-519中的要求,在低次谐波未超出标准。单元级联多重化变频器性能最优,很好的满足了IEEE-519中的要求,在各个范围内谐波含量均未超出标准。在总谐波畸变率方面,三种输出结构都满足IEEE-519标准的要求。

三种拓扑都各有优缺点,但都很好地解决了变频器输出谐波的抑制问题,使得输出波形更接近正弦。通过与IEEE-519标准的对比发现,在不安装其他滤波环节的情况下,以单元级联多重化变频器的效果最佳,完全达到了IEEE-519的规定,除此之外,其它结构不能完全满足标准中的限定值,需要在一定容量的滤波环节辅助下工作。

5 结束语

随着高压大功率变频器的广泛应用,改进其拓扑结构从而有效的抑制和减少交流侧谐波的产生已成为工程师门追求的目标。多重化结构作为变频器整流侧普遍采用的拓扑结构,已经能够满足不同场合、不同电压等级的需要,但当重数增加时,虽然谐波抑制效果明显,但装置的结构复杂,变压器损耗增加,故普遍采用12、18脉动结构。这样只要增加一个小容量的滤波器就可以很好的满足IEEE-519的要求。

逆变侧,单元级联多电平结构的输入、输出谐波抑制效果最佳,但系统结构复杂,器件数量多,体积庞大。三电平结构简单,所需器件数最少,但受到电平数的限制谐波抑制效果稍差,且存在中点电位平衡问题,这也是阻碍谐波抑制效果的因素之一,将NPC在整流侧实现可以解决这一问题。变压器耦合输出型结构,可以在采用目前耐压水平器件的情况下,满足高压大功率的需要,且结构简单、器件数量相对较少,谐波抑制效果介于以上两种结构之间,是一种折中的方案.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top