利用频率扩展技术改善开关的EMI性能
由于开关稳压器能够极大地节省空间并具有极低的功耗,因此这种稳压器正在逐步取代线性稳压器,而进入各种新型应用中。但是,开关稳压器有一个缺点,其内部开关电流可能产生电磁干扰(EMI)。EMI的峰值能量集中在开关频率上,降低EMI的传统方法是谨慎处理接地、屏蔽和滤波。这些降低EMI的方法以控制和抑制稳压器内部开关电流所产生的辐射为主。降低开关电流的幅度和改变频率也能降低EMI。确切地说,多相同步和扩展频谱频率调制(SSFM)是降低EMI的两种强有力的工具。
多相同步技术
采用多个同步开关取代单个开关可以降低峰值开关电流。这种方法就是多相同步,通过从外部驱动开关来实现,它用一个外部时钟使稳压器之间产生相移。多相同步将每个开关的接通时间错开,这样在以前是死区的地方就有了输入电流。图1显示的是用单个200kHz时钟工作的两个开关稳压器的电源电流。左图显示的是未采用时钟同步方法时的电流。右边的图显示的则是让第二个稳压器时钟有180°相移时的电流,结果在两倍频(400kHz)上出现了较小的峰值电流,因此峰值EMI也较小。由于EMI现在于两倍频上,所以可以进一步降低,因为在较高频率上滤波更有效。通过将时钟信号相位划分成多个相位增量,可以同步更多的稳压器,而每增加一个稳压器都会使EMI降低一些。很多两相和多相稳压器都通过内置时钟相移来实施多相同步。
利用外部时钟实现多相同步允许多个两相或多相稳压器同步,而且根据电源要求需使用多个独立的稳压器时,有时也必须用外部时钟进行多相同步。硅振荡器非常适用于这类应用,因为硅振荡器能够提供多个频率和相位可编程的输出。
应该提到的是,多相同步的好处远不止于改善EMI。使用多个并联的同步稳压器的一个基本作用是消除输入和输出的纹波电流,从而允许使用尺寸小得多的输入和输出电容器。多相解决方案具有较小的等效电感,因此可以实现较高的电流转换率。就负载瞬态而言,多相解决方案还具有较短的开关延迟时间。负载瞬态响应得到改善以后,所需的输出电容可以进一步减小。
图1:未采用和采用相位同步的两个开关稳压器的电源电流。
扩展频谱频率调制
对EMI的最大改善可以通过不断改变开关的时钟频率来实现。这种方法叫做SSFM,它改善EMI的道理是,不允许辐射的能量在任何接收器频带内长时间停留。开关稳压器采用SSFM的有效性取决于频率扩展量(典型值为±10%)和调制方式。
大多数开关都产生随频率变化的纹波,开关频率越低、纹波越大,开关频率越高、纹波越小。因此,如果开关时钟是频率调制的,那么开关的纹波就产生幅度调制。如果时钟的调制信号是周期性的,如正弦波或三角波,那么就会出现周期性纹波调制,而且在调制频率处出现一个截然不同的频谱分量。因为调制频率远低于开关的时钟频率,因此可能难以滤除。这有可能导致系统问题,如出现可听单音或可见干扰,引起电源噪声耦合或下行电路电源抑制受限问题。
伪随机频率调制可以避免这种周期性纹波。采用伪随机频率调制方法时,开关稳压器的时钟以伪随机方式从一个频率转移到另一个频率。由于开关输出纹波的幅度是由一个类似噪声的信号调制,因此输出看起来好像没有调制一样,对下行系统的影响也微不足道。频率转移的速度或称跳变速率越快,开关在给定频率上工作的时间就越短(如图2所示),就给定接收器而言,EMI在“带内”的时间也就越短。
图2:伪随机调制和LTC6908跟踪滤波器的作用。
不过,开关能跟得上的频率变化速度(df/dt)是有限的。时钟频率突变时,在时钟频率的过渡边缘将出现输出尖峰(与负载阶跃响应非常类似)。较低的带宽开关其尖峰更加显著。出于这个原因,凌力尔特公司最新的SSFM振荡器LTC6908中含有一个专有跟踪滤波器,用以平滑从一个频率向下一个频率的过渡。大多数开关的带宽都是标称开关频率的1/10至1/20,这刚好适合LTC6908,LTC6908的缺省调制速率为标称时钟频率的1/16。就带宽有限的开关而言,LTC6908的调制速率可以降低至标称时钟频率的1/32或甚至1/64,以确保恰当地稳压。内部滤波器跟踪跳变速率,以在所有频率和调制速率上实现最佳的平滑效果。
图3:采用LTC6908的开关稳压器输出频谱(9kHz分辨率带宽,峰值检波器)。
图4:LTC6908驱动两个开关稳压器示意图。
SSFM确实有用吗?
在电磁兼容(EMC)领域,开关几乎总是发射器,而其它所有东西都可能是接收器。在任意时刻,开关稳压器的峰值辐射看起来都是相同的,不管SSFM是否启用。瞬时辐射的幅度是不变的,但是瞬时辐射的频率确实在变。那么,SSFM怎么起作用呢?SSFM的有效性取决于频率扩
- 工程师讲解:抗EMI性能的传感器接口解决方案(01-11)
- 通过改变电源频率来降低EMI性能(11-12)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...