用于新能源发电系统ZVS多端口DC/DC变流器
摘要:提出一种应用于新能源发电系统的多端口双向DC/DC变流器。该变流器由两个有源全桥、一个有源半桥和一个三绕组高频变压器组成。通过调节变压器两侧电压的移相角可实现输入和输出侧的双向能量流动。利用缓冲电容和变压器的漏感实现软开关,并对升压模式下的能量流动和软开关条件进行详细理论分析,改变移相角可以影响软开关的范围。最后通过仿真和实验验证了多端口双向DC/DC变流器的性能。
关键词:变流器;多端口;软开关
1 引言
由于环境和经济原因,新能源已经引起了全球范围的极大关注。目前所使用的新能源包括太阳能、风能、地热能、潮汐能、氢能和生物能等。由于绝大多数新能源以电能形式产生,因此电能变换技术的创新对于使用新能源时的成本就变得非常关键。
虽然对可再生能源的研究取得了一定进展,但是也存在一些内在问题。其一为间歇性,即可再生能源输出的功率不是恒定的;其二为相对于电力负荷,可再生能源反应比较慢。通常,可再生能源与储能单元结合可增强系统性能或实现附加的功能。
作为一种新颖的电力电子变流器,多端口双向DC/DC变流器越来越多地应用于以燃料电池、太阳能和风能为代表的新能源发电系统。它可以有效地将储能装置、新能源发电设备以及负载结合起来。同时,还可以克服新能源发电系统的内在缺点,具有功率密度高、易实现集中控制和能量管理等优点。尽管多端口变流器越来越多地应用于新能源发电系统、电动汽车、UPS和混合储能系统等,但所提出的多端口变流器的拓扑或多或少具有以下缺点:功率单向流动;无电气隔离;高电流应力;元器件数量多;控制复杂;多个电源不能同时传递功率。
2 稳态分析
为解决上述问题,这里提出一种三端口双向DC/DC变流器。它由低压侧两个有源全桥、高压侧一个有源半桥及一个三绕组高频变压器组成,如图1所示。该变流器具有以下优点:有电气隔离;输入电流纹波小;无需辅助电路实现软开关;电容数量少;低压侧开关应力低;可在多个电源之间单独或同时传递功率;由于变压器的变比高,可以匹配不同电压等级。
低压侧分别连接储能单元,例如蓄电池和超级电容器。变压器的漏感起到储能和能量传递作用。升压模式下变压器两侧理想的电压和电流波形如图2所示。变压器低压侧两个全桥分别产生方波电压ur12(结构A1中),ur56(结构A2中),变压器高压侧产生方波电压ur34。通过调节3个开关桥方波电压之间的移相角可以实现并控制双向功率流动。
其中ur12与ur34间的移相角定义为φ13,而ur56与ur34间的移相角定义为φ53。当ur12和ur56超前于ur34时,φ13和φ53为正,这时能量从低压侧向高压侧流动,变流器工作在升压模式,使高压侧电压保持恒定。能量反向流动时,变流器工作在降压模式,对储能元件进行充电。从图2可见,一个完整的开关周期可分为6个阶段。变压器漏感电流ir13,ir53和ir15为θ的函数,θ=ωt,ω为开关频率。
式(7)表明,可通过移相角或开关频率控制系统的功率流动。考虑到变压器的体积,选择固定开关频率。则通过φ13和φ53控制功率流动。
3 变流器ZVS条件
三端口变流器的换流机制与二端口变流器相似,即将关断的开关器件,会将电流转移到相应谐振电容中,利用电容电压不能突变的特点,实现零电压关断。利用谐振电容的充放电,使得开关管反并联二极管开通后,再开通开关管,实现零电压开通。然而,对于三端口变流器,由于有两个输入级相互影响,软开关条件相对更复杂。
从图2可推出升压模式下的软开关条件。在升压模式下,开关管零电压开关(ZVS)的实现与开关管关断前时刻的初次级电流的状态有关,简单解释为即将关断的开关管流过正向电流,不同时刻的电流要求为:
其中函数f1~f6分别表示开关管VS1(VS1’),VS5(VS5’),VS3,VS2(VS2’),VS6(VS6’),VS4的软开关条件。由式(1)~(8)可以推出VS3,VS4可完全实现软开关,而VS1(VS1’),VS2(VS2’)和VS5(VS5’),VS6(VS6’)的软开关条件受到φ13,φ53范围的限制,意味着有源桥双向DC/DC变流器一个输入级电路的软开关条件受到另一个输入级中控制变量的影响。则要根据两个输入级电路控制变量间的相互影响,合理选取φ13,φ53的值。
4 仿真结果
变流器电路的仿真参数为:Uin1=Uin2=12 V,L1=L2=25μH,Lr13=Lr53=Lr15=0.5μH,fs=20 kHz,C1=C2=4.4 mF,C3=C4=330μF,Co= 660μF,φ13=0.16π,φ53=0.1π,D=0.5。升压模式下仿真波形如图3所示。可见,当开关器件的反并联二极管导通时,给开关器件施加驱动信号,开关器件可实现ZVS。
- S3C2440A嵌入式手持终端电源管理系统设计(01-11)
- 基于CAN通信的电源监控系统的设计(04-06)
- 基于MSP430单片机的电源监控管理系统(04-20)
- 适用于全球交流电源的单节锂离子电池充电器设计(06-07)
- GPIB芯片TNT4882在多路程控电源中的应用(06-08)
- AD7656的原理及在继电保护产品中的应用(06-18)
- 婵°倕鍊瑰玻鎸庮殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
闂佺ǹ绻堥崝宥夊蓟閻斿憡濯寸€广儱鎷嬮崝鍛槈閺冨倸孝闁汇劎濮甸敍鎰板箣濠婂懐鎳囨繛鎴炴尰濮樸劑鎮¢敍鍕珰闁糕槅鍘剧粈澶愭煙缂佹ê濮囩€规洖鐭傞幆宥夊棘閸喚宀涢悗瑙勬偠閸庢壆绱為弮鍫熷殑闁芥ê顦~鏃堟煥濞戞ǹ瀚板┑顕呬邯楠炲啴濡搁妷锕€娓愰梻渚囧亞閸犳劙宕瑰鑸碘拹濠㈣埖鐡曠粈瀣归崗鍧氱細妞ゎ偄鎳橀幆鍐礋椤愩倖顔忔俊顐ゅ閸ㄥ灚瀵奸幇顔剧煓閻庯綆浜為悷锟�...
- 婵炴垶鎼╅崢鐐殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
缂備緡鍣g粻鏍焵椤掑﹥瀚�30婵犮垼鍩栧畝绋课涢鍌欑剨闁告洦鍨奸弳銉╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺屻倝鏌ㄥ☉妯侯殭缂佹鎸鹃埀顒傤攰閸╂牕顔忕捄銊﹀珰闁规儳鎳愮粈澶愭煕閺傜儤娅呮い鎺斿枛瀹曘劌螣閻戞ê娓愰梻渚囧亞閸犳洟骞撻鍫濈濡鑳堕鍗炩槈閹垮啩绨婚柟顔奸叄瀵粙鎮℃惔锝嗩啅婵☆偆澧楅崹鍨閹邦喚鐭欓悗锝庝簽閻熷酣鏌i妸銉ヮ伂妞も晪绠戞晥闁跨噦鎷�...
- Agilent ADS 闂佽桨鐒﹂悷銉╊敆閻旂厧鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
婵炴垶鎸婚幐鎼侇敊瀹ュ绠抽柛顐秵閸わ箓鏌ㄥ☉妯垮闁告瑥绻樺Λ鍐閿濆骸鏁奸柣鐔哥懐閺嬪儊S闂佸憡鑹剧€氼噣锝為幒妤€绀夐柣鏃囶嚙閸樻挳鏌涘⿰鍐濞村吋鍔楃划娆戔偓锝庝簽鐎瑰鏌i姀鈺冨帨缂侀亶浜跺畷婵嬪煛閸屾矮鎲鹃梺鐑╁亾閸斿秴銆掗崼鏇熷剹妞ゆ挾濮甸悾閬嶆煛閸愩劎鍩f俊顐ユ硶閳ь剚鍐荤紓姘辨閻у挷S...
- HFSS闁诲孩鍐荤紓姘卞姬閸曨垰鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
闁荤姍鍐仾缂佽鐒︾粙澶愬箻閹颁礁鏅欓梺鐟版惈閻楁劙顢氶幎鑺ユ櫖閻忕偠妫勫鍧楁⒒閸稑鐏辨い鏂款樀楠炴帡宕峰▎绂⊿闂佹眹鍔岀€氼剚鎱ㄥ☉銏″殑闁芥ê顦扮€氭煡骞栫€涙ɑ鈷掗柡浣靛€濋弫宥囦沪閽樺鐩庨梺鍛婃煛閺呮粓宕戝澶婄闁靛ň鏅滃銊х磼椤栨繂鍚圭紒顔芥そ瀹曠兘寮跺▎鎯уΤ婵炴垶姊绘慨鐢垫暜婢舵劕绠垫い鈥抽敪SS...
- CST閻庣敻鍋婇崰妤冧焊濠靛棭鍟呴柕澶堝€楃粙濠囨倵楠炲灝鈧洟鎮$捄銊﹀妞ゆ挾鍠愬▓宀€绱掔€n亶鍎忔い銊︾矌閹叉鏁撻敓锟�
闂佸搫顦€涒晛危閹存緷铏光偓锝傛櫅閻︽粓鎮规担绛嬪殝缂佽鲸绻堝畷妤呭Ω閳哄倹銆冮柣鐘辩瀵泛顔忕欢缍璗闂佸憡鑹剧€氫即濡村澶婄闁绘棁顕ч崢鎾煕濠婂啳瀚板ù鍏煎姉缁瑧鈧綆浜炵€瑰鏌i姀鈺冨帨缂佽鲸绻堝畷婵嬪煛閸屾矮鎲鹃棅顐㈡祩閸嬪﹪鍩€椤掑倸鏋欓柛銈嗙矌閳ь剚鍐婚梽鍕暜婢舵劕绠垫い鈥愁敍T闁荤姳鐒﹀畷姗€顢橀崨濠冨劅闁哄啫鍊归弳锟�...
- 闁诲繐绻愮€氫即銆傞崼鏇炴槬闁惧繗顕栭弨銊╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺岋拷
婵炴垶鎸稿ú锝囩箔閳ь剙螖閸屾惮鎴﹀Χ婵傚摜宓侀柛鎰级閸曢箖鎮硅閸ゆ牜妲愬┑鍥ㄤ氦婵炲棗娴烽弰鍌炴偣閸パ冣挃闁宠鍚嬬粙澶嬫姜閹殿喚鈽夐梺闈╄礋閸斿矂鎯冮悩绛圭矗闁瑰鍋涜灇闂佸搫鐗滈崹鍫曘€傞锕€鏄ラ柣鏃€鐏氭禍锝夋倶閻愬瓨绀冮悗姘辨暬閹虫ê顫濋崜褏顦梺鐟扮仛閹搁绮崨鏉戦敜婵﹩鍓涢弶浠嬫煟閵娿儱顏х紒妤佹尰缁嬪顫濋鍌氭暏缂佺虎鍘搁崑锟�...
- 閻庣敻鍋婇崰妤冧焊濠靛牅鐒婇柛鏇ㄥ灱閺嗐儲绻涢弶鎴剶闁革絾妞介獮娆忣吋閸曨厾鈻曢梺绯曟櫇椤㈠﹪顢欓崟顓熷珰闁告挆鈧弻銈夋煕濮橆剛澧︽繛澶涙嫹
闁荤姵鍔﹂崢娲箯闁秴瑙﹂柛顐犲劜閼茬娀鏌¢崶銊︾稇闁汇倕瀚伴獮鍡涙偑閸涱垳顦紓鍌氬暞閸ㄧ敻宕规惔銊ノュ〒姘e亾妞わ絽澧庨幏顐﹀矗濡搫纾块梺闈涙閼冲爼濡靛顑芥灃闁靛繒濮甸悵銈夋煏閸℃洘顦峰ǎ鍥э躬瀹曪綁鏌ㄧ€n剛鍩嶉梺鎸庣☉閺堫剟宕瑰⿰鍛暫濞达絽婀辨竟澶愭煛瀹ュ妫戠紒銊ユ健閺屽懘鏁撻敓锟�...