微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 变频调速系统设计中的问题探讨

变频调速系统设计中的问题探讨

时间:11-30 来源:互联网 点击:

电机的极数和额定功率。电机的极数决定了同步转速,要求电机的同步转速尽可能地覆盖整个调速范围,使连续负载容量高一些。为了充分利用设备潜能,避免浪费,可允许电机短时超出同步速度,但必须小于电机允许的最大速度。转矩取设备在起动、连续运行、过载或最高速等状态下的最大转矩。最后,根据变频器输出功率和额定电流稍大于电机的功率和额定电流确定变频器的参数与型号。

  应注意的是,变频器的额定容量及参数是针对一定的海拔高度和环境温度而标出的,一般指海拔1000m以下,温度在40℃或25℃以下。若使用环境超出该规定,在根据变频器参数确定型号前要考虑由此造成的降容因素。

  4.2 变频器容量的选择

  通用变频器的选择包括变频器的型式选择和容量选择两个方面。其总的原则是首先保证可靠地实现工艺要求,再尽可能节省资金。

  根据控制功能可将通用变频器分为三种类型:普通功能型u/f控制变频器、具有转矩控制功能的高性能型u/f控制变频器(也称无跳闸变频器)和矢量控制高性能型变频器。变频器类型的选择要根据负载的要求进行。对于风机、泵类等平方转矩(TL∝n2),低速下负载转矩较小,通常可选择普通功能型的变频器。对于恒转矩类负载或有较高静态转速要求的机械采用具有转矩控制功能的高性能变频器则是比较理想的。因为这种变频器低速转矩大,静态机械特性硬度大,不怕负载冲击,具有挖土机特性。日本富士公司的FRENIC5000G11/P11、三肯公司的SAMCO-L系列属于此类。也有采用普通型变频器的例子。为了实现大调速比的恒转矩调速,常采用加大变频器容量的办法。对于要求精度高、动态性能好、响应快的生产机械(如造纸机械、轧钢机等),应采用矢量控制高功能型通用变频器。安川公司的VS-616G5系列、西门子公司的6SE7系列变频器属于此类。

  大多数变频器容量可从三个角度表述:额定电流、可用电动机功率和额定容量。其中后两项,变频器生产厂家由本国或公司生产的标准电动机给出,或随变频器输出电压而降低,都很难确切表达变频器的能力。选择变频器时,只有变频器的额定电流是一个反映半导体变频装置负载能力的关键量。负载电流不超过变频器额定电流是选择变频器的基本原则。需要着重指出的是,确定变频器容量前应仔细了解设备的工艺情况及电动机参数,例如潜水电泵、绕线转子电动机额定电流要大于普通鼠笼异步电动机额定电流,冶金工业常用的辊道电动机不仅额定电流大很多,同时它允许短时处于堵转工作状态,且辊道传动大多数是多电动机传动。应保持在无故障状态下负载总电流均不允许超过变频器的额定电流。

  变频器供给电动机的是脉动电流,电动机在额定运行状态下,用变频器供电与用工频电网供电相比电流要大,所以选择变频器电流或功率要比电动机电流或功率大一个等级,一般为:

  Pnv≥1.1Pn

  式中; PNV—变频器额定功率,kW;

  PN—电动机额定功率,kW

  5 变频调速设计中应注意的问题

  5.1 负荷匹配问题

  机泵负荷最大节能是选用型号、容量与实际负荷相匹配,其中包括机泵与所配电动机的匹配,要避免“大马拉小车”,一般设计裕量应控制在10%以内。我国的工业系统设计&search=1 " target="_blank">系统设计,往往存在向上靠档,层层加码,宁大勿小的现象,可以说,从工艺上提出流量时加系数,选机泵时再加系数,电动机选择还加系数,以致部分工业系统的机泵实际运行效率极低。如果在设计机泵负荷时加变频调速,以达到节能的目的,实际是增加了变频器,名义上是增加了新的能源损耗和增加了投资。现在不少对变频调速的节能效益分析往往忽略了变频器的效率等,这种简单的理论计算,其效果是失真的。

  在工业生产中,由于生产负荷变化,生产季节变化等,机泵负荷也不是恒定不变的,有时变化范围还是很大的,有些发电厂由于调峰需要,昼夜负荷变化也较大,而且机泵负荷在使用一年后,输出流量将比额定流量有所下降。对流量变化较大的机泵负荷采用变频调速效果是显而易见的,而且负荷变化范围越大,节能效果越好。

  5.2 高次谐波

  变频器产生的高次谐波,会引起电网电压波形的畸变,而且是电网有效容量越小,变频器容量越大,这种影响越严重。这种对电网的污染,会使电力电容、电抗器、变压器容易发热,并产生电磁谐振,电动机、发电机产生附加损耗,继电器产生误动作等。各国对电压畸变和谐波控制都有相应的规定,我国GB12668-90中规定,电压畸变率小于10%,任何奇次谐波均不超过5%,任何偶次谐波均不超过2%。使用变频器后,在电网局部会超过国标,所以一定要采取相应的措施。

  5.3 电动机选择

由于变频

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top