微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 为什么选择数字电源

为什么选择数字电源

时间:12-17 来源:互联网 点击:

  引言

  有经验的数字电源用户通常都会很清楚地认识到数字电源系统管理的好处。不过,就那些正在考虑数字电源对他们的产品是否有意义的用户而言,数字电源的好处也许就不那么明显了。他们提出的典型问题包括:当采用数字电源时,我们产品的上市时间会更长吗? 采用数字电源有多难? 学习期多长? 有额外成本吗? 我们的客户会看重数字电源吗? 这种技术会打开新的市场吗? 如果我们不在产品线中采用数字电源,会落后吗? 他们需要知道这些问题的答案,以帮助决定采用数字电源时对最终应用是否为一个良好的选择。

  为什么使用数字电源?

  在开发阶段,用一个简单的 PC 连接对模拟电源进行数字控制尤其有用,在这个阶段,设计师需要让系统迅速启动和运行。可能有多达 30 个负载点 (POL)电压轨,用户要能非常容易地监视和调节电源电压、对电源加电 / 断电排序、设定工作电压限制以及读取电压、电流、温度等参数,并能通过数字接口获取详细的故障日志数据。在这类系统中,要对电压轨保持严格控制并实现最高性能,高准确度极端重要。

  在数据中心中,一个关键挑战是: 通过重新安排工作流程并将作业转移到未充分利用的服务器上,以关闭其他服务器,降低总体功耗。为了满足这类要求,知道最终用户设备的功耗是非常重要的。一个恰当设计的数字电源管理系统可以向用户提供功耗数据,从而允许做出智能能量管理决策。

  在今天的新式电子系统中,稳压器的环境和工作状态也许是最后一个需要了解的“盲点”,因为通常没有办法直接配置或远程监视稳压器的关键工作参数。要实现可靠工作,能检测稳压器输出电压随时间的漂移或过热情况并在潜在故障事件发生之前采取行动,这是至关重要的。一个良好设计的数字电源系统可以监视电压稳压器的性能,并报告稳压器状态是否正常,以便在超出规范或发生故障之前能采取纠正行动。

  为了保护昂贵的 ASIC 不受可能出现的过压情况的影响,高速比较器必须监视每个电压轨的值,并在某个电压轨超出规定的安全工作限度时,立即采取保护行动。在数字电源系统中,当发生故障时,可以通过 PMBus 警报线通知主机,而且相关的电压轨可以关断,以保护 ASIC 等受电设备。要实现这样的保护,需要卓越的准确度和非常快的响应时间。

  之所以采用数字电源管理是因为数字电源能提供有关电源系统的准确信息,而且能轻而易举地自主控制和监察几十个电压。在一个复杂的系统板上,到处探测和监视 30 个负载点电压可能是非常困难的。系统设计师一行代码都不必编写,除非他们需要主处理器读取遥测数据,并进行简单的故障干预。显然,制造商需要为专门市场提供定制和经济实惠的器件,这使新手和经验老道的用户都可以轻松使用。凌力尔特提供几款数字电源产品,最近推出的 LTC3880 就是其中之一。

  数字电源是正确选择

  LTC3880 和 LTC3880-1 是双输出高效率同步降压型 DC/DC 控制器,具基于 I2C 的 PMBus 接口,用于数字电源系统管理。这两款器件同时提供同类最佳的模拟开关稳压器性能和精确的混合信号数据转换,以方便电源系统设计和管理,LTpowerPlay 软件开发系统支持这两款器件,该系统具有易用的图形用户界面 (GUI)。

  LTC3880 / LTC3880-1 允许对实时控制进行数字设定和回读,并允许监视关键负载点转换器的功能。可编程控制参数包括输出电压、裕度调节和电流限制、输入和输出检查限制、加电排序和跟踪、开关频率以及识别和可跟踪性数据。内置的精确数据转换器及 EEPROM 允许捕获稳压器配置设定值和遥测变量,包括输入和输出电压及电流、占空比、温度以及故障日志,并对其进行非易失性存储。

  LTC3880/-1 具模拟控制环路,可实现最佳环路稳定性和最快速的瞬态响应,而且没有较慢的数字控制环路中常见的量化效应。这些器件可以提供两个独立的输出,或配置为提供两相单输出。多达 6 相可以交错和并联,以在多个 IC 之间实现准确的均流,从而最大限度地为大电流和 / 或多输出应用降低输入和输出滤波要求。一个集成的放大器提供真正差分远端输出电压取样,从而实现了准确度很高的调节,而且不受电路板 IR 压降的影响。图 1 显示了一个典型应用,该应用利用 LTC3880 从 12V 总线电压产生 1.8V/20A 和 3.3V/15A。

  

  图 1:LTC3880 应用原理图

利用凌力尔特公司基于图形用户界面的 LTpowerPlay开发软件,LTC3880/-1 的配置非常容易通过器件的 I2C 串行接口保存到内部 EEPROM 中。片内上存储器允许特定用户设置。此外,这些控制器还能自主加电,而不会增加主处理器的负担。输出电压、开关频率

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top