微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > Buck-Boost隔离直流转换器设计

Buck-Boost隔离直流转换器设计

时间:01-18 来源:互联网 点击:

摘要:在Buck-Boost隔离直流转换器宽范围输入电压的条件下,分析了典型的全桥Boost转换器拓扑结构,由于存在的谐振电感包括漏电感,全桥Boost转换器只能采用双边沿调制。该转换器采用UC3895作为控制器,对全桥单元采用移相转换控制的方式,为了提高全桥Boost转换器系统的可靠性和效率,采用三模式两频率控制方式,在输入宽范围电压的情况下,最高500 V输入,360 V输出。在此采用Matlab软件进行仿真,实验结果表明输入电压平均效率范围是96.2%,最高效率能达到97.5%。
关键词:Buck-Boost;隔离直流转换器;全桥Boost转换器;脉宽调制;双边沿调制

0 引言
可再生能源的利用最近受到世界各地的关注,包括不断增长的能量需求和迫切需要减少空气中的碳排放。光伏能源一直是一个有前途的新型的可再生能源,由于其零污染(包括空气和噪音),所在的位置不需要太多限制,并易于维护。如今,风力发电并网的光伏系统已经成为了一个重要用电方法。风力发电并网逆变器成为风力发电并同光伏系统的一个重要部分,它深刻影响着整个系统的效率和成本。目前,最受欢迎的风力发电并网逆变器的配置是两级联配置组成的一个前端直流转换器和一个变频器,因此直流转换器的设计尤为重要,这里采用的是Buck-Boost隔离直流转换器。

1 转换器拓扑
图1表示隔离直流转换器,在Buck单元选择的是全桥模块,这个转换器称为FB-Boost转换器。图1中电源开关Q1~Q4的二极管和结电容二极管被忽略了,谐振电感Lr包括变压器的漏电感在全桥单元的电源开关中用来实现零电压ZVS。需要注意的是当没有谐振电感Lr并且变压器的漏电感为零时,提出了FB-Boost转换器是可行的,FB-Boost转换器的特点与TSBB转换器基本相同。然而,变压器的漏电感在实际电路中是不可避免的,并且在全桥转换器中也是不可避免的,引入一个外部变压器的谐振电感实现功率开关的零电压。

为电感Lr的平均电流;k是变压器初级绕组的变压比;fs是全桥单元的开关频率,只有当Qb关断的时候,电感电流iLf才会通过二极管Db,因此平均电感电流可以表示为:

从式(7)中可看出,FB-Boost转换器的输出电压不仅与全桥单元和Boost单元的工作周期有关,而且与输出电流、共振电感和开关频率有关。
为了减少电感的脉动电流,通过移相TEM控制的方法来实现减少电感的脉动电流。
为了验证FB-Boost转换器和控制方案有效,输入250~500 V,输出360 V、6 W额定功率。参数如下:
(1)全桥单元Q1~Q4;SPW47N60C3;
(2)整流二极管DR1~DR4;DSEI60-06,
(3)Boost单元Qb;SPW47N60C3;
(4)Boost单元Db;SDP30S120;
(5)电感Lf为310μH;
(6)输出电容Cf为4 760 μP;
(7)谐振电感Lr为5μH;
(8)变压比k=1;
(9)全桥单元开关频率fs=50 Hz;
(10)Boost单元fs_b=100 Hz;
在图2中,(a)为全桥单元的下边沿调制和Boost单元的上边沿调制,(b)为全桥单元的上边沿调制和Boost单元的下边沿调制。

2 控制器的设计
图3~图5显示了所提出的控制方案的控制框图。

在图3中,输入电压的采样信号被送到控制模块,即Vin/H,H为取样系数,通过比较Vin/H来确定FB-Boost转换器的操作模式。此外,CON1,CON2和CON3是用来选择FB模式、Boost模式和FB-Boost模式信号。
在全桥单元和Boost单元中有两个独立的输出电压校准器,在CON1,CON2,CON3分别为不同的高低压状态时,如表1所示。

在图4中,显示了一个移相控制器UC3895和一个PWM控制器UC3525,用来控制全桥单元和Boost单元,Q1~Q4是UC3895的驱动信号,特别是Q1和Q3是全桥单元超前的驱动信号开关,Q2和Q4是全桥单元滞后的驱动信号开关,Q1和Q3的驱动信号被送到或非门,给一个脉宽输出的脉冲信号,相当于Q1和Q3的关断,然后脉冲信号被送到SYNC。
在图5接收到来自SYNC的信号后,送到UC3525,作为Boost单元的同步信号,最后实现FB-Boost转换器的TEM。

3 Matlab软件仿真实现
通过Matlab仿真得到4组仿真数据,如图6所示。

图7得出在TEM控制下,转换效率得到了提高。

4 结语
本文提出了隔离型Buck-Boost转换器,给出了一系列的高效率控制策略。利用移相控制的双边沿调制方法,考虑了占空比的问题,以相对简单的方式来实现全桥Boost转换器使整个输入电压范围内的电感电流的脉动最小化,在保证变压器不饱和的情况下,减小开关损耗。最终实现Buck-Boost变换器及其控制方法的有效性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top