设计开关电源转换器中电容阵列的数学方法
过程中输出电容充上了电,通过对方程2进行积分可得到输出电容器两端在等效纯电容上的电压提升:
输出电容两端的总的电压提升为ESR两端的电压提升和等效纯电容上电压提升的和,因而:
方程6是一个二次方程,在局部极点处出现极值。局部极点发生在:
最大电压提升发生在t = tlp_r,其值为:
如果tlp_r是负数,那么最大电压提升实际发生在t=0,因为在t>0区间方程是单调衰减函数,因而,最大电压提升为:
以图像处理器单元(GPU)为例,我们使用12V的三芯锂离子电池,通过降压转换器把该电压转换到1.5V来为GPU供电。在小功率和大功率模式,GPU的耗流量分别为0.5A和8.5A。保证GPU正常工作的电压范围为1.5V +/-75mV。假设降压转换器的电感值初选为2.2微亨,解耦电容为330微法并带有4毫欧的ESR,那么:
V(SUB/)in(/SUB) = 12 V,V(SUB/)in(/SUB)= 1.5 V,L = 2.2 μH,C = 330 μF,R(SUB/)esr(/SUB)= 5 mΩ,I(SUB/)1(/SUB)=0.5 A,I(SUB/)2(/SUB) = 8.5 A
把上述参数代入方程4和方程7,在加载过程(负载电流从0.5A跃升到8.5A)中,输出电容阵列上的最大电压降发生在t=0.36微秒,其值为32.9mV。
在卸载过程(负载电流从8.5A跃降到0.5A)中,输出电容阵列的最大电压提升发生在t=10.4微秒,其值为144.0mV。
重复试算可得到满足1.5V +/-75mV电压要求的最优值:C=720微法,R(SUB/)esr(/SUB)=6.2微欧。
陶瓷电容器ESR小但电容量也小,但陶瓷电容器的低ESR效应只在它保有能量期间(按C(dv/dt)=I计算)有效。电解电容器ESR大且电容量大,但电解电容器的大电容效应只表现在其谐振频率内(按R(SUB/)esr(/SUB)C计算)。聚合物钽电容器处于两者之间——ESR相对较小,电容相对较大。
用哪些器件来产生720微法电容和6.2毫欧ESR呢?可用两个330微法30毫欧(ESR)聚合物钽电容器和6个10微法2毫欧(ESR)陶瓷电容器构成一个电容器阵列。
在电容器阵列中,应根据器件的谐振频率递减的次序来安排电容器与负载的相对位置。陶瓷电容谐振频率最高,应最接近于负载,聚合物钽电容其次,电解电容离负载最远。
从方程4和方程7可以看出,选用小电感更有利于减少电压偏离。把电感从2.2微亨减小到1.2微亨将可把电容值从720微法削减到390微法。对降压转换器来说,电感值是一个重要参数,应综合考虑效率优化、电感纹波电流和输出电容阵列计算等因素。
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)