镇流器
20世纪80年代后期,美国将环型电感镇流器应用在紧凑型节能荧光灯上,1988年Midwest Toriod公司开始批量生产。我国相继于90年代初,由中美合资青岛太平洋照明有限公司采用环型铁芯生产插拔式节能荧光灯电感镇流器,至今已有10多年历史。
基本简介
镇流器是日光灯上起限流作用和产生瞬间高压的设备,它是在硅钢制做的铁芯上缠漆包线制作而成,这样的带铁芯的线圈,在瞬间开/关上电时,就会自感产生高压,加在日光灯管的两端的电极(灯丝)上。这个动作是交替进行的,当启辉器(跳泡)闭合时,灯管的灯丝通过镇流器限流导通发热;当启辉器开路时,镇流器就会自感产生高压加在灯管的两端灯丝上,灯丝发射电子轰击管壁的萤光粉发光,启辉器反复几次通断,就会反复几次这样的动作,从而打通灯管。当灯管正常发光时,内阻变小,启辉器就始终保持开路状态,这样电流就稳定的通过灯管、镇流器工作了,使灯管正常发光。由于镇流器在日光灯工作时,始终有电流通过,所以容易产生振动,并且会发热,所以有镇流器的日光灯,特别是镇流器质量不好时,会产生很大的声音,用的时间长了,还容易烧毁。
镇流器分电子镇流器和电感镇流器。
来源发展
20世纪70年代出现了世界性的能源危机,大功率电子镇流器节约能源的紧迫感使许多公司致力于节能光源和荧光灯电子镇流器的研究,随着半导体技术飞速发展,各种高反压功率开关器件不断涌现,为电子镇流器的开发提供了条件,70年代末,国外厂家率先推出了第一代电子镇流器,是照明发展史上一项重大的创新。由于它具有节能等许多优点,引起了全世界的极大关注和兴趣,认为是取代电感镇流器的理想产品,随后一些著名的企业都投入了相当的人力、物力来进行更高一级的研究与开发。由于微电子技术突飞猛进,促进了电子镇流器向高性能高可靠性方向发展,许多半导体公司推出了专用功率开关器件和控制集成电路的系列产品,1984年,西门子公司开发出了TPA4812等有源功率因数校正电器IC,功率因数达到0.99。随后一些公司相继推出集成电子镇流器,89年芬兰赫尔瓦利公司又成功推出可调光单片集成电路电子镇流器,电子镇流器已在全世界特别是发达国家全国推广应用。
分类
气体放电灯的镇流器主要有两大类:
(1)电感式镇流器,包括普通型和节能型;也分为普通电感镇流器和HID电感镇流器。
(2)电子式镇流器,20世纪70年代末进入市场,我国从上世纪80年代中期开始研制生产。这类镇流器产品中也有谐波含量大小、能耗大小不同荧光灯镇流器 产 品。
普通型和节能型镇流器没有明确的界限,不便推广应用。欧盟关于直管荧光灯的能效等级标准有具体的数据规定,不同等级的产品规定了功率限值,可供借鉴。表1列出了欧盟的CELMA组织关于T8荧光灯镇流器能效等级的划分。
表1规定的能效等级,应按照欧盟标准EN 50294进行测试,可以给定相应的等级。
欧盟已经禁止使用的C级和D级电感镇流器,正是我国新颁布的国家标准《建筑照明设计标准》(GB50034-2004)中明确规定不应使用的电感镇流器。该标准同时规定直管荧光灯应采用电子镇流器或节能型电感镇流器。前者相当于欧标的A2级和A3级产品;后者相当于B1级和B2级产品。而从标准编制组编写的“标准培训讲座”的资料可以看出,在制定“照明功率密度(LPD)”标准中测算资料,电子镇流器的系统功率相当于A2级,节能电感镇流器系统功率则略高于B1级,但低于B2级。
工作原理
电感镇流器
当开关闭合电路中施加220V 50HZ的交流电源时,电流流过镇流器,灯管灯丝启辉器给灯丝加热(启辉器开始时是断开的,由于施加了一个大于190V以上的交流电压,使得启辉器内的跳泡内的气体弧光放电,使得双金属片加热变形,两个电极靠在一起,形成通路给灯丝加热),当启动器的两个电极靠在一起,由于没有弧光放电,双金属片冷却,两极分开,由于电感镇流器呈感性,当电路突然中断时,在灯两端会产生持续时间约1ms的600V-1500V的脉冲电压,其确切的电压值取决于灯的类型,在放电的情况下,灯的两端电压立即下降,此时镇流器一方面对灯电流进行限制作用,另一方面使电源电压和灯的工作电流之间产生55。-65。的相位差,从而维持灯的二次启动电压,使灯能更稳定的工作。
电感镇流由于结构简单,寿命长,作为第一种荧光灯配合工作的镇流器,它的市场占有率还比较大,但是,由于它的功率因数低,低电压启动性能差,耗能笨重,频闪等诸多缺点,它的市场慢慢地被电子镇流器所取代,电感镇流器能量损耗:40W(灯管功率)+10W(电感镇流器自身发热损耗)等于整套灯具总耗
- 一种4级智能可调光荧光灯电子镇流器电路设计(04-24)
- 工程师diy大揭秘:600W 高压钠灯电子镇流器的研制(12-28)
- 一种采用BL8301的高性能ppfc镇流器设计电路(11-21)
- Hf荧光灯电子镇流器的评价(07-22)
- DALI电子镇流器的调光(06-29)
- HID电子镇流器中逆变电路方案设计(06-26)