高精度数字跟踪式压电陶瓷驱动电源设计
近年来,新型高压大电流集成放大器广泛使用于压电陶瓷驱动电源的设计中,然而压电元件表现出的电容性和功率运放较高的输入失调电压(几十毫伏),使得压电陶瓷电源控制存在精度不高、稳定性较差以及非线性失真等缺点。而且模拟信号发生器的频率分辨率低且跟踪迟滞[1],也降低了压电陶瓷的动态响应速度。因此设计一种高精度、稳定性好的数控压电陶瓷电源是实现微位移控制、非线性检测以及微机电系统转换的关键[2]。
1 压电陶瓷驱动电源
压电陶瓷驱动电源由自适应数字信号发生器、D/A转换、复合放大器、高压直流电源、相位补偿和保护电路等组成,如图1所示。其中复合式放大器优化了前级输入结构,采用高精度低漂移的低压运放与高压集成功率运算放大器级联,在高电压大电流驱动压电负载的同时,实现较高的线性控制精度和动态响应特性。
1.1 数字信号发生器
压电陶瓷元件工作频率受温度、负载和接触面的影响较大,因此信号发生器应具备频率跟踪功能,以实时调节工作频率。图2所示为一种数字式自适应信号发生器的原理框图[1]。其工作过程为:从取样电阻Rs处得到与输出电流成正比的电压信号Smp,该采样信号与循环计数器经D/A产生的锯齿波比较,得到一个脉冲信号,脉冲后沿将此循环计数值存放至锁存器组,该值即为此时刻模拟采样信号对应的数字量。循环计数器每隔128个周波,更新一次数字量,相邻时刻的两个数字量送入极值比较器,则可判断电流变大(1)或减少(0),比较结果(1或0)通过D触发器来调整频率控制计数器方向,确定频率控制字的增减,自适应地实时调整频率。调整后的频率控制字查找波形数据表,输出12位数字量经D/A转换产生正弦波、方波和其他波形信号。该信号发生器由全数字硬件电路实现,分辨率高,工作频率稳定且无温度漂移现象。
1.2 复合放大器
PA04是Cirrus Logic公司生产的一种高电压MOSFET功率运算放大器,工作电压高达200 V,峰值输出电流为20 A,转换率为50 V/μs,最大输入失调电压可达10 mV,因输入特性不能满足分辨率为10 mV以下的高精度压电驱动电源的要求,所以需配合其他器件使用。OP07是一种低噪声、高精度的单片运算放大器,转换率为0.17 V/μs,输入级可提供75 μV的高精度输入失调电压和漂移,能高增益地放大微弱信号,而不需要偏置和调零,这种特性使得OP07适合作前级放大器来控制精度和漂移。故本设计的复合放大器由高压放大器PA04和低漂移高精度OP07运放级联组成[2-3],形成一个具有反馈的复合式放大器,其中OP07是主放大器,而PA04用作升压放大器,实现高精度和低漂移的高电压电源的驱动,如图3所示。
两个串联的高压开关DC电源为PA04提供±100 V直流电压,OP07电源采用±15 V供电。为提高噪声抑制能力,在复合放大器电源两端分别并联0.1 μF电容去耦。复合结构放大器开环增益AOL等于OP07开环增益和PA04的闭环放大倍数之和,复合放大器小信号交流增益1/β由高精密电阻反馈电阻RFC和输入电阻RIC之比确定。
1.3 相位补偿设计
如图4所示,复合放大器的开环增益与小信号交流增益1/β在闭合频率fcl处交汇,该处环路增益Aβ为0 dB。当复合放大器驱动容性压电负载时[3],放大器的输出阻抗Z0和容性负载CL会在开环增益AOL的高频段增加一个极点fp2=1/Z0CL,修正开环增益曲线为AOL/C,图4中在fcl(标注为 )处闭合斜率差变为40 dB/dec,大于20 dB/dec,相移接近180°,处于临界稳定状态,很可能产生振荡而损坏放大器,故对复合放大器进行相位补偿设计。
1.3.1 零点补偿
复合放大器的零点补偿包括升压放大器PA04和复合结构的补偿。为确保容性负载时PA04升压放大器工作稳定,对PA04的反馈电阻RF和并联电容CF进行零点补偿[3-4]。本设计取CF为2 pF,放大器相位裕度大于45°;复合结构反馈电阻RFC并联反馈电容CFC,形成零点补偿电路。该补偿结构使1/β曲线在fp5=1/2?仔RFCCFC处以20 dB/dec速度下插,与AOL/C曲线相交得到40 dB/dec,但仍然大于20 dB/dec,故复合放大器不稳定,需要噪声增益补偿。
放大器OP07输入端用两对IN4148二极管反接提供差模和共模保护,防止来自 CFC 的瞬态过压。OP07 输出端使用快速恢复二极管MUR160对瞬态过压进行保护,阻止来自CF的瞬态过压通过PA04将OP07损坏;高压放大器PA04输出端可增加一对快恢复二极管UF4004,反向恢复时间应小于100 ns,防止压电负载由于机械压力产生的电压对放大器的冲击,将尖峰电压送回电源。
1.5 散热性设计
压电陶瓷驱动电源的散热设计主要考虑复合放大器的功耗,因压电负载呈纯容性,功率因数很低,电源输出功率几乎全部消耗在放大器上,因此要选择合适的散热方式保证壳温低于85 ℃。图7为散热设计分析模型,该模型将功率等效为电流,温度等效为电压,热阻等
- 基于串行通信的压电陶瓷驱动器的设计(01-22)
- 压电陶瓷致动器驱动电源设计研究(10-27)
- 场效应管功率放大器PA04原理及其应用(12-31)
- 功率放大器PA04原理及其应用(03-15)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)