微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于光伏并网系统DC/DC全桥软开关变换器研究

基于光伏并网系统DC/DC全桥软开关变换器研究

时间:05-16 来源:互联网 点击:

  目前并网逆变器市场上大多采用工频隔离型并网逆变器,由于工频变压器会使系统效率变低、体积大、成本高等缺点,近年来,高频隔离型并网逆变器也逐渐成为研究热点;但是逆变器的高频化会带来高电磁干扰(EMI)和高开关损耗,同时考虑到光伏并网系统作为大功率系统的应用,因此移相全桥软开关变换器(FB-ZVZCS)很适用于光伏并网中的DC/DC环节。

  现阶段,实现FB-ZVZCS的方法有很多,主要有滞后桥臂串阻塞二极管、原边串饱和电抗器,副边有源钳位等等;文献提出了一种副边无源钳位的ZVZCS变换器,本文结合光伏逆变器的特点并从电路结构简单、占空比丢失小、副边整流二极管寄生振荡小、效率高的角度出发,采用无源钳位的ZVZCS变换器作为光伏升压移相全桥DC/DC变换器。

  1 原理分析及实现软开关的条件

  1.1 原理分析

  图1为无源钳位的ZVZCS全桥变换器,该电路中超前桥臂通过并联在两个开关管V1和V3上电容的C1和C3来实现零电压开关。而实现滞后桥臂零电流开关,是在续流期间通过钳位电容Cc上的电压反射到漏感Lr上,使得原边电流迅速下降来实现的。

  

  为简化电路分析,先作如下假设:所有元件都是理想的;输出滤波电容很大,可近似为电压源,输出滤波电感很大,可近似为电流源;电容C1=C3=Cr,变压器匝数比为N1/N2=1/k,输入电压为Uin,输出电压为U0.在半个周期中,变换器一共有8种工作状态,各阶段主要波形如图2所示;

  模式1[t0~t1]

  t0时刻,V1开通,由于变压器漏感Lr的存在,原边电流不会发生突变,V4零电流开通,如图2所示。电压Uin作用于漏感Lr,原边电流Ip为:

  模式2[t1~t2]

  t1时刻,整流二极管VD2、VD3反向关断,VD2、VD3两端的反压等于U0,无源钳位电路开始工作,通过Cc和D2给Cf充电,钳位电容Cc两端电压升高。这段时间内有:

  模式3[t2~t3]

  t2时刻,二极管D2关断,整流二极管VD2和VD3承受nUin电压,原边电流nI0,在这段时间内,变换器经变压器向负载提供能量,Cc上电压充至UCc(t2)=Uin-U0/2n并保持不变。

  模式4[t3~t4]

  t3时刻,V1关断,由于并联C1,V1实现了ZVS关断,电容C1开始充电,C3开始放电。

  模式5[t4~t5]

  在t4时刻,钳位二极管D1开始工作,原边不足以向副边提供能量,Cc通过Lf、Cf、D1开始向负载提供能量,同时C1继续充电、C3放电至t5时刻。

  模式6[t5~t6]

  t5时刻,C3放电完毕,续流二极管D3开始导通,为V3实现零电压开通提供了条件。V4处于续流状态,此时原边电流迅速下降,负载电流主要由钳位电容Cc提供,流过Cc的电流增大,在t6时刻原边电流减小为零,此时Cc的电流值达到最大。

  模式7[t6~t6]

  t6时刻,原边电流为零,负载电流全部由钳位电容Cc提供,整流二极管两端承受的反压随钳位电容Cc的放电下降。

  模式8[t7~t8]

  t7时刻,钳位电容Cc中的能量被全部释放,整流二极管VD1~VD4开始续流,变压器原边电流为零并且保持。在t8时刻关断V4,实现了零电流关断并结束前半个周期的换流;下一个时刻,V2零电流开通,开始进入下半个周期的循环,工作模式和上述分析基本相同。

  1.2 实现软开关的条件

  1.2.1 超前臂实觋ZVS条件

  为实现零电压开关,要求要有足够的能量来使得同一桥臂开关管两端并联的电容充、放电,从而让即将开通的开关管的反并联二极管自然导通。所以要实现超前桥臂的零电压开关,需要在开关管导通和关断之前将电容C1和C3上的电荷抽走。根据模式4可得到最小死区时间。

  Td》(C1+C2)Uin/2nI0 (3)

  1.2.2 滞后臂实现ZCS条件

  变压器漏感Lr的大小是以能实现滞后桥臂ZCS为前提的,假设滞后臂开关管的开通时间为ton,要实现ZCS需要(t1-t0)》ton,则根据工作模式1可得:

  Lr=Uint/Ip(t)≥Uin(t1-t0)/2nI0≥Uinton/2nI0 (4)

  2 关键参数的设计

  变换器采用了移相控制,超前臂两开关管互补180°导通,两开关管驱动信号之间设置一定死区,滞后臂设置与超前臂相同,只是在相位上有一定的滞后,滞后角度反映了有效占空比的大小。设计步骤如下:

  (1)设置两对桥臂的死区时间Td;

  (2)设置占空比D,计算匝比k;

  (3)根据式(1)算出谐振电感Lr,根据式(2)求出钳位电容Cc;

  3 仿真研究

  为了检验上述分析,采用matlab仿真软件对无源钳位的ZVZCS全桥变换器进行开环仿真(如图3所示),根据以上分析,设计电路参数为:输入电压Uin=36V,输出Uo=400V,输出功率Po=1000W,移相角30°,开关管频率fs=20kHz,输出滤波电容Cf=100 μF,输出滤波电感Lf=3mH,超前桥臂开关管并联电容C1=C3=0.2 μF,输入滤波电容Cin=1000μF,谐振电感Lr=0.36 μH,钳位电容Cc=100nF,仿真结果如下:

  

图3为超前臂G1的管压降和驱动波形;在G1导通之前VDS1下降为零,在G1关断之

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top