照明用LED的低压驱动技术分析
照明用LED光源的VF电压都很低,一般VF=2.75-3.8V,IF在15-1400mA;因此LED驱动IC的输出电压是VFXN或VFX1,IF恒流在15-1400mA。LED灯具使用的LED光源有小功率(IF=15-20mA)和大功率(IF>200mA))二种,小功率LED多用来做LED日光灯、装饰灯、格栅灯;大功率LED用来做家庭照明灯、射灯、水底灯、洗墙灯、路灯、隧道灯、汽车工作灯等。功率LED光源是低电压、大电流驱动的器件,其发光的强度由流过LED的电流大小决定,电流过强会引起LED光的衰减,电流过弱会影响LED的发光强度,因此,LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。在LED照明领域,要体现出节能和长寿命的特点,选择好LED驱动IC至关重要,没有好的驱动IC的匹配,LED照明的优势无法体现。
1 LED工作要素
LED工作的主要参数是VF、IF,其它相关的是颜色/色温/波长/亮度/发光角度/效率/功耗等。LED是一个P-N结二极管,只有施加足够的正向电压才能传导电流。VF正向电压是为LED发光建立一个正常的工作状态,IF正向电流是促使LED发光,发光亮度与流过的电流成正比例。LEDVF标称电压:3.4V±0.2V。
LEDIF工作电流按应用需要选用,各档不能混用。
LED灯用各档LED电流见下表:

2 大功率照明用LED
大功率照明用LED其封装从成品来看是单颗芯片的,其实是用N颗LED管芯封装在一个单位里的。它们的排列组合是串并联,它们是N个串联,再N个并联,然后由二点联接电源(图1)。选用时要特别注意它的VF和IF。

图1 大功率照明用LED内部结构
3 LED灯具驱动原理
LED灯具驱动需要先将高压的交流电变换成低压的交流电(AC/AC),然后将低压的交流电经桥式整流变换成低压的直流电(AC/DC),再通过高效率的DC/DC开关稳压器降压和变换成恒流源,输出恒定的电流驱动LED光源。LED光源是按灯具的设计要求由小功率或大功率LED多串多并而组成。每串的IF电流是按所选用的LED光源IF要求设计,总的正向电压△VF是N颗LED的总和。
LED灯具驱动原理如图2所示。
LED灯具选用36V以下的交流电源可以考虑非隔离供电,如选用220V和100V的交流电源应考虑隔离供电。

图2 LED灯具驱动原理
4 LED灯具的低压驱动
目前MR11、MR16射灯、水底灯、洗墙灯、路灯、隧道灯、汽车工作灯等LED灯具大多选用散热较好的自带铜基或铝基板的1W、3W大功率LED光源,使用AC/DC12-36V电源,因而需要使用DC/DC的降压(Buck)+恒流给LED提供VF和IF。LED灯具大多使用低压电源,因此在这类灯具的电路设计上,LED的串联个数在1-9颗,尤以1-3颗为常见。串联的总△VF应低于电源Vin。如三颗LED串联,△VF=3.4VX3=10.2V。在Vin>12V,能正常工作。MR11、MR16射灯常见的是1WX3串联或3WX1;水底灯常见的是1WX3串联2-3并,三个一组;洗墙灯常见的是1WX7-9串联;路灯常见的是1WX9串联3并,4--6个一组;、汽车工作灯常见的是1WX3-6串联3并。当然LED的串并联的方案是多种多样的,串联个数与其工作电压(Vin)有关,这里就DC12-36V工作电压而言。目前1W的LED光源散热较好,因此选用较多。
4.1 LED灯具对低压驱动芯片的要求
1)驱动芯片的标称输入电压范围应当满足DC8-40V,以覆盖应用面的需要,耐压如能大于45V更好;AC12V或24V输入时简单的桥式整流器输出电压会随电网电压波动,特别是电压偏高时输出直流电压也会偏高,驱动IC如不能适应宽电压范围,往往在电网电压升高时会被击穿,LED光源也因此被烧毁。
2)驱动芯片的标称输出电流要求大于1.2-1.5A,作为照明用的LED光源,1W功率的LED光源其标称工作电流为350mA,3W功率的LED光源其标称工作电流为700mA,功率大的需要更大的电流,因此LED照明灯具选用的驱动IC必需有足够的电流输出,设计产品时必需使驱动IC工作在满负输出的70-90%的最佳工作区域。使用满负输出电流的驱动IC在灯具狭小空间散热不畅,容易疲劳和早期失效。
3)驱动芯片的输出电流必需长久恒定,LED光源才能稳定发光,亮度不会闪烁;同一批驱动芯片在同等条件下使用,其输出电流大小要尽可能一致,也就是离散性要小,这样在大批量自动化生产线上生产才能有效和有序;对于输出电流有一定离散性的驱动芯片必选在出厂或投入生产线前分档,调整PCB板上电流设定电阻(Rs)的阻值大小,使之生产的LED灯具恒流驱动板对同类LED光源的发光亮度一致,保持最终产品的一致性。
4)驱动芯片的封装应有利于驱动芯片管芯的快速散热,如将管芯(Die)直接绑定在铜板上,并有一Pin直接延伸到封装外,便于直接焊接在PCB板的铜箔上迅速导热(图3)。如在一个类似4X4mm的硅片管芯上,要长时间通过30
- 专用于便携设备电源管理的超小型降压转换器(06-29)
- 级联低压差稳压器SMPS(07-12)
- 基于DSP的单相精密电源硬件设计(07-24)
- WiFi 收发器的电源和接地设计(08-12)
- 微安级数控恒流源的设计(08-20)
- 新一代手机电源管理的最佳化挑战(08-30)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...