采用ZXSC300系列DC-DC控制器的LED驱动电路设计
作为卤素灯低压照明的一种替换技术,LED照明日益流行。与卤素灯泡不同的是,LED没有效率低、可靠性差以及使用寿命短等题目的困扰。本文描述了一种在直流照明系统中驱动大功率LED的新方法,这种解决方案能提供95%的效率、更长的使用寿命,并能承受更高的电气和机械冲击。
在图1所示的电路中,ZXSC300系列DC-DC控制器驱动以降压模式工作的外部开关。表1列出了12V电源系统的材料清单。通过增加R2的值可提供更高的系统电压,例如,要得到24V的电压仅需将R2值改为2.2kΩ,同时电容C1也须有更高的额定电压,电路基本工作原理如下:
当Q1导通时,电流流过LED、电容C2和电感。当R1两真个压降达到Isense引脚的阈值电压时,Q1关断并保持一个固定时间,电感中的能量流过D1和LED。经过这个固定时间后,Q1重新导通,如此循环往复。
下面对电路的工作原理进行更具体地分析,以得到电路参数及与系统设计相关的计算。下面从开关Q1在一个固定时间TON内导通开始分析。ZXSC310将Q1导通直至它在Isense引脚上检测到19mV电压(标称值),于是达到此阈值电压时Q1上的电流为19mV/R1,称为IPEAK。
当Q1导通,电流从电源流出,流过C1和串联LED。假设LED正向压降为VF,则剩下的电源电压将全部落在L1上,称为VL1,并使L1上的电流以di/dt=VL1/L1的斜率上升。其中di/dt单位为安培/秒、VL1的单位为伏、L1的单位为亨。
Q1 与 R1上的压降忽略不计,由于Q1的导通电阻RDS(ON)很小,且R1上的压降总是小于19mV。19mV是Q1的关断阈值电压,依据Isense引脚的阈值电压设置。
VIN=VF+VL1
TON=IPEAKxL1/ VL1
由于将VIN减往LED正向压降可得到L1两真个电压,故可算出TON。因此,假如L1较小,则对于同样的峰值电流IPEAK及电源电压VIN,TON 亦较小。请留意,在电感电流上升到IPEAK的过程中,电流流过LED,因此LED上的均匀电流即是TON上升期间及TOFF下降期间的电流之和。
现在看一下Q1关断期间(TOFF)的情况。ZXSC300系列DC-DC控制器的TOFF在内部被固定为1.7us(标称值),需要留意的是,假如用该值来计算电流斜坡,则其范围最小为1.2μs,最大为3.2μs。
为尽量减少传导损耗及开关损耗,TON不能比TOFF小太多。过高的开关频率会造成较高的dv/dt,因此建议ZXSC300和310的最高工作频率为200 kHz。假设固定TOFF为1.7μs,则TON最小值为5μs-1.7μs=3.3μs。然而这不是一个尽对限制值,这些器件已可在2至3倍该频率下工作,但转换效率会降低。
在TOFF期间,储存在电感中的能量将被转移到LED,只在肖特基二极管上有一些损耗。储存在电感中的能量为:
EQ1
系统可以以连续或非连续模式工作,两者之间的差别及对均匀电流的影响将在后面部分中解释。
假如TOFF恰好是电流达到零所需的时间,则LED中的均匀电流将为IPEAK/2。实际上,电流可能会在TOFF之前达到零,此时均匀电流将小于IPEAK/2,由于在这个周期里有一段时间LED的电流为零,这称为“非连续”工作模式。
假如经过1.7μs后电流没有达到零,而是下降到IMIN,则称器件进进“连续”工作模式。LED电流将在IMIN与IPEAK之间上升和下降(di/dt斜率可能不同),此时均匀LED电流为IMIN与IPEAK的均匀值。
通过用实际值进行计算,上面的原理可运用于实际电路设计。例如,已知输出电压稳定的12V直流电源以及3个功率为1W的LED(需要340mA工作电流),即可参考图1所示的电路及表1列出的材料清单进行设计。该设计可工作在11V至18V电源电压范围内。
电源输进电压=VIN=12V,LED正向压降=VF=9.6V,VIN =VF+VL1。因此,VL1=12V-9.6V=2.4V。
峰值电流=Vsense/R1=34mV/50m(=680mA,这里R1就是Rsense。
TON=IPEAKxL1/VL1
在上述等式中,近似以为在整个电流上升与下降期间LED正向压降不变。事实上它会随电流升高而增大,但这些公式使设计计算的结果在实际电路所用器件的容差范围内。此外,VIN与VF之间的差值小于它们中的任何一个,所以6.2μs的上升时间将基本上取决于这些电压值。
值得留意的是,对于9.6V的LED正向压降以及300mV的肖特基二极管正向压降来说,从680mA下降到零的时间为:
由于TOFF一般为1.7μs,所以电流有足够的时间降到零。然而,尽管1.5μs已相当接近1.7μs,由于器件的容差,线圈电流可能不能降到零。但这不是什么大题目,由于残余电流会很校需要留意的是,由于对峰值电流的丈量及关断,不可能产生在具有固定TON时间的转换器里发生的危险的“电感阶跃”(inductor staircasing)题目。由于电流可能永远都不会超过IPEAK,所以即使电流从一个有限值开始增长(即连
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)