数字钟实验电路的设计与仿真
时间:07-23
来源:互联网
点击:
开关等组成,其中J为校分开关,H为校时开关。
2.5 显示部分
显示部分采用74LS48来进行译码,用于驱动LED-7段共阴极数码管。由74LS48和LED-7段共阴极数码管组成数码显示电路,如图7所示。
译码驱动电路是将“秒”、“分”、“时”计数器输出的8421BCD码进行编译,转换为数码管需要的逻辑状态,驱动LED-7段数码管显示,并且为保证数码管正常工作提供足够的工作电流。若将秒、分、时计数器的每位输出分别与相应七段译码器的输出端连接,在脉冲的作用下,便可进行不同的数字显示。由于使用的译码器74LS48输出端高电平有效,所以选择共阴极的数码管来与之搭配。
在电子设计中,EDA设计和仿真是一个重要的设计环节。在众多的EDA设计和仿真中,Multisim10以其强大的仿真设计应用功能,在电子电路的仿真和设计中得到了广泛应用。
在完成总体电路设计的基础上,用Multisim10电子电路仿真软件完成电路的仿真设计。首先对电路的各功能模块进行仿真设计,并对其实现的功能进行调试与仿真,所有的子系统都能够正常运行时,把所有功能模块整合在一起,进行仿真和调试,最终完成整体电路的仿真设计。
值得注意的是,在数字钟电路设计过程中,一定要注意检测触发器电路时钟的触发模式,确定是上升沿触发还是下降沿触发,避免在设计过程中出现计数故障;在振荡器设计的过程中,为使振荡器产生精确、稳定的频率,要选择精度较高的电阻器和电容器。
4 结束语
文中设计和仿真的数字钟电路虽然只是基于实验目的,但是如果需要走时精准的数字钟完全可以通过改进时基信号来得到。具体方法为:用晶体振荡器(Crystal Oscillators)产生更加准确的时基信号,其它分频电路、计时电路、译码显示电路等只要保持不变,即可实现。
- 基于555定时器构成的多谐振荡器的应用(12-09)
- 序列信号发生器的设计方法及应用实例(04-17)
- 计数器在数字电路中的应用(01-17)
- 基于PWM功能的AVR单片机定时-计数器设计(04-23)
- 基于集成计数器的N进制计数器设计与仿真(04-19)
- 基于可编程计数器的时序逻辑电路设计(08-09)