利用MPPT技术实现高效太阳能充电方案
能量较低,所以EMI较低。
2. 限压式过充保护,过充电压可用外部电阻设置。结束充电的方式可通过设置Float管脚电平选择,当Float接地时,芯片工作在过压保护模式,并停止充电。当Float接电池正极且电池电压达到保护电压时,系统工作在脉冲充电(或浮充)状态。
3. 工作状态和充电结束状态指示。CHEND管脚的输出有三种状态,分别为充电状态,充电结束状态,高阻态。
4. 通过太阳能电池板输出电压控制系统自动开启和关闭。
5. 低静态工作电流。为了保护电池电量,在不充电状态下,静态工作电流不大于75μA。
6. 电池的输入电压为2V,电池板的输入的最低工作电压为电池电压的1/8即0.25V。
7. 高达95%的能量转换效率。
典型应用电路设计及注意事项
IV0300 应用电路设计如图3所示,在具体设计中需注意以下问题。
图3、基于IV0300的应用设计电路图
1. 两个串联的LED用于显示不同的状态,可以选用不同的颜色,但两端电压要高于电池电压,否则电池将通过指示灯放电。
2. 未来提高能量转换效率,尽量选择电池板的工作电压接近电池的最低电压,比如单节锂电池开路电压尽量选在3.5V左右,最大功率输出电压在2.8V左右。这样可以保证升压电路的工作效率在90%以上。
3. 充电截止电压V(Max_Battery),设定R1、R2决定充电截止电压,R2可由下面公式得到,R2=R1*(VOC/1.257V)/(1-(VOC/1.257V)),其中1.257V为Vref电压,充电截止电压为VOC=(V(Max_Battery)-0.06)/5。
4. SIN脚是用于测量输入电压的,所以要求此点电压要对地稳定。如果纹波较大,会影响芯片正常工作,需加大电容C的容值。
5. 通常电感电流要比电路最大电流大一倍,以保证效率。(end)
- 专用于便携设备电源管理的超小型降压转换器(06-29)
- 级联低压差稳压器SMPS(07-12)
- 基于DSP的单相精密电源硬件设计(07-24)
- WiFi 收发器的电源和接地设计(08-12)
- 微安级数控恒流源的设计(08-20)
- 新一代手机电源管理的最佳化挑战(08-30)